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Abstract

This study explores the for labor-related production impacts of temperature stress

both for its own interest and to understand the scope for adaptation to climate change.

Focusing on non-agricultural output, I find that hot temperature exerts a significant

causal impact on local labor product, with substantially larger effects in highly ex-

posed industries such as construction, manufacturing, and transportation. Places that

experience more extreme heat exposure in expectation (e.g. Houston, Orlando) exhibit

lower impacts per hot day than cooler regions (e.g. Boston, San Francisco). A year

with 10 additional 90◦F days would reduce output per capita in highly exposed sectors

by -3.5% in counties in the coldest quintile and -1.3%, roughly a third, in the warmest

quintile. County-level air-conditioning penetration explains a large proportion of these

differences. While these estimates suggest adaptation to heat stress in the long-run,

they also imply realistic limits, at least given current technologies.
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1 Introduction

Emerging empirical evidence suggests that temperature stress can affect production-related

outcomes including labor supply, labor productivity, and total output in the short run, in

both developing and developed economies.1 As Dell, Jones, and Olken (2014) note in a

recent review of this rapidly evolving literature, estimates of the labor productivity impacts

of heat stress seem to converge to around 1% to 3% normalized decline per ◦C above room

temperature. However, it is unclear to what extent such estimates can currently be used to

inform economic policy. In particular, given the gradual and long-term nature of climate

change, many have argued that it is critically important to incorporate the potential for

adaptation over time in estimating the social cost of carbon (Kahn, 2016).

Will economic agents adapt to future climate change, reducing the realized economic

costs of a hotter world? Or will adaptation to climate change be slow, costly, and con-

strained by practical limits?

So far, evidence for long-run adaptation to changes in climate are mixed, with some

analyses suggesting substantial scope for effective adaptation (e.g. Mendelsohn, Nordhaus,

and Shaw, 1994; Butler and Huybers, 2013; Barecca et al, 2016) and others finding the

opposite (e.g. Annan and Schlenker, 2015; Burke and Emerick, 2016). Moreover, the

existing literature on adaptation has focused primarily on agriculture and human health,

despite the fact that, as a proportion of total climate damages, labor productivity impacts

may exceed all other impacts combined (Heal and Park, 2016; Burke, Hsiang, and Miguel,

2016).

This paper investigates the potential for adaptation to the labor impacts of heat stress.

Using a historical panel of weather and payroll data from the United States (1986-2011),

I compare the marginal impact of short-run (annual) heat exposure across regions that

have experienced different long-term (decadal) climates, under the assumption that agents

will optimally adapt to average local climates given sufficiently large production impacts.

Across a range of specifications that control for county and year fixed effects, I find evidence

of significant adaptation to extreme heat in the long run; places where agents can expect

more hot days (e.g. days with maximum temperatures above 90◦F) on average experience

reduced production impacts per hot day. However, the fact that hot days reduce output

even in some of the richest, most well-adapted regions of the United States suggest that

certain industries remain susceptible to non-trivial temperature-related productivity losses

– at least given existing technologies.

The empirical analysis proceeds in four steps. First, I estimate the causal impact of

extreme heat on local non-agricultural production by leveraging quasi-random variation in

the number of hot days per year within a given county over time. Using estimation models

that control for time-invariant unobservables and smooth trends in payroll at the county

level, I find that the average U.S. county experiences a 0.03% reduction in payroll per capita

1See Zivin and Neidell (2013), Cachone et al (2013), Sudarshan and Tewari (2014), Deryugina and
Hsiang (2015), and Burke, Hsiang, Miguel (2016).
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during a year with one additional day with maximum temperatures above 90◦F.2 The

estimation strategy relies on the assumption that year-to-year fluctuations in the number

of extreme heat days in any given county are uncorrelated with unobserved determinants of

county payroll after controlling for time-invariant differences (county fixed effects), trends

in economic activity (county-specific polynomial time trends and controls for population),

as well as correlated output shocks at the national level (year fixed effects).

Second, to further isolate production impacts of heat exposure operating through la-

bor inputs, I first verify that the main effect is not driven by agricultural yield, and then

compare the impacts across sectors that are likely to be more or less exposed to the ele-

ments.3 Industries classified by the National Institute for Occupational Safety and Health

(NIOSH) as highly exposed – namely, construction, transportation, utilities, manufactur-

ing, and mining – experience markedly higher impacts than relatively insulated ones such

as education or financial services.4

Third, I compare the marginal impact of an additional hot (90◦F+) day on output

in highly exposed sectors across counties with different average climates to estimate the

scope for long-run adaptation. The intuition here is as follows. Assuming producers have

an incentive to protect labor inputs from heat-related production impacts, we would expect

them to invest in long-run adaptive capital (e.g. air conditioning) to the point where the

expected payoffs over time equal the total costs of investment. Given optimizing agents,

we would expect the realized marginal impact of an additional hot day in a place like

Houston, which experiences 93 days above 90◦F per year on average, to be different from

the marginal impact in a place like Boston, which experiences only 9 such days per year, due

to the fact that the expected benefits of air conditioning in Boston are lower given the cooler

average climate.5 To the extent that Bostonians and Houstonians are optimally adapted to

their current (historical) climates, one might interpret the differences in marginal damage

coefficients as an approximation of the potential scope for adaptation to global warming

in the long run, at least given existing technologies.

I find that very hot places (e.g. Houston, Orlando) are significantly better adapted to

the production impacts of heat stress than colder or milder ones (e.g. Boston, Minneapolis,

San Francisco). Regions in the 1st and 5th quintiles of the 90◦F+ day distribution —

which feature, on average, 3 and 83 such days per year — suffer short-run impacts of -0.35

percentage points and -0.13 percentage points per additional day above 90◦F respectively.

2I focus on the impact of heat stress, though controls for days with mild and cold temperatures are
included non-parametrically, in addition to controls for average as well as extreme precipitation. In most
regions, cold days do not seem to have a significant impact on non-agricultural production, consistent with
Deryugina and Hsiang (2015).

3I also attempt to isolate impacts on industries that are more or less susceptible to temperature-driven
changes in short-run demand; that is, supply-side production impacts on payroll as opposed to effects arising
from changes in demand that are correlated with hot temperature.

4Payroll in healthcare-related industries increases slightly in years with more hot days, consistent with
the documented relationship between extreme heat and human health (Zivin and Schrader, 2016; Barecca
et al, 2016).

5Note that this may be true in expectation despite the fact that, on any given unusually hot year,
Boston-based producers may suffer large negative impacts from heat exposure.
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The short run impact of an additional hot day falls monotonically as one moves to hotter

regions within the U.S., suggesting that optimizing agents do in fact respond to persistent

temperature extremes.

Fourth, I explore the role of air conditioning in mitigating the adverse production

impacts of extreme heat, using a newly constructed panel of residential AC penetration

at the county-year level.6 I find that a significant proportion of the difference in marginal

impacts of heat exposure can be explained by the spread of air conditioning, consistent

with recent findings in the context of adaptation to heat-related health impacts (Barecca

et al, 2016). Because changes in AC penetration are not experimental, I cannot rule out

the possibility that the effects documented here are driven by correlated changes in other

unobserved variables. However, AC penetration does not seem to affect the production

impacts of colder days, suggesting that the adoption of AC is not coincident with factors

that determine overall payroll.

These results build on an extensive literature on the economic impacts of climate

change, reviewed by Tol (2009), as well as the growing literature on the welfare impacts of

climate change arising from direct heat exposure (Dell, Jones, and Olken, 2014; Heal and

Park, 2016). The estimates of temperature-driven economic impacts are broadly consistent

with prior results, including Hsiang (2010), Dell, Jones, and Olken (2012), and Deryugina

and Hsiang (2015). However, they also imply that, contrary to previous suggestions that

developed economies are well-insulated from climate damages, even the world’s wealthi-

est economies are currently subject to non-trivial weather-related output losses - impacts

which may be exacerbated by future climate change.7

These findings also contribute to a growing literature on adaptation to environmental

change (Mendelsohn, Nordhaus, Shaw, 1994; Hornbeck, 2012; Burke and Emerick, 2016).

The method explored here — of leveraging the spatial gradient in temperature sensitivity

and the degree of climate adaptation that this implies — builds upon work by Butler

and Huybers (2013) in agriculture and Barecca et al (2016) in health, extending it to

labor-related settings. One objective of these studies has been to allow researchers to

eventually link the econometrically well-identified studies of weather-driven output shocks

to the historically more simulation-based estimates of the social costs of carbon (e.g. Stern,

2008; Hope, 2009; Nordhaus, 2010), an objective that this paper shares.

The rest of the paper is organized as follows. Section 2 provides some background

information and a simple model that guides the empirical analysis. Section 3 presents

the data and summary statistics. Section 4 presents the empirical strategy, and Section 5

presents the main empirical findings. Section 6 discusses and concludes.

6Given the focus on production impacts, commercial and/or industrial AC data would be the ideal
measure. Such data was not available. The data that is available shows a tight correlation between
residential and commercial AC penetration across regions, suggesting that residential AC penetration may
provide a good proxy for average AC penetration in production-related sectors for a given region.

7Some studies have suggested that developed economies may even benefit from moderate amounts of
warming (Tol, 2009; Mendelsohn, 1994).
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2 Background and Conceptual Framework

2.1 The Welfare Impacts of Heat Exposure

Recent empirical work finds strong evidence for a causal impact of short-run heat exposure

on economically relevant outcomes, including human health, labor productivity, and labor

supply. For instance, Deschenes and Greenstone (2011) find that an additional day above

90◦F leads to a 0.11% increase in annual mortality in the United States, controlling for

location-specific characteristics and the potential for harvesting. In the context of labor

productivity, Cachon et al (2012) document significant negative impacts of extreme heat

on automobile plant output, controlling for plant-specific productivity and seasonality in

production. They find that a week with six or more days above 90◦F reduces output that

week by 8% on average.8 Graff Zivin and Neidell (2013) document substantial contrac-

tions in labor supply on hot days in those US industries with high exposure to extreme

temperature and weather shocks. They find that, for highly exposed occupations (e.g.

construction), days with temperature above 100◦F (37◦C) lead to 23% lower labor supply

than temperatures between 77◦-80◦F (25◦-27◦C). These studies, and the longstanding lab-

oratory literature on temperature and task productivity they build upon, form the basis for

exploring adaptation to heat stress in the context of non-agricultural production activities.

2.2 Evidence for Adaptation to Direct Heat Stress

How quickly and effectively economic agents can adjust to changes in their environment is

a question of central relevance for economic theory as well as economic policy (Samuelson,

1947; Viner, 1958; Mendelsohn, 1994; Davis and Weinstein, 2002; Cutler, Miller, Norton,

2007; Hornbeck, 2012; Burke and Emerick, 2016). At the most general level, economists

have debated this issue theoretically since at least Samuelson (1947), who suggested the

LeChatelier principle: that longer time horizons will allow for greater margins of adjustment

to any given shock or change in the economic environment.

Estimating adaptive responses to environmental changes in the long run is especially

important in the context of climate change, which will take place over the span of mul-

tiple decades. Despite a rapidly evolving literature that documents a statistically robust

relationship between short-run weather variation (e.g. temperature and rainfall shocks)

and economic variables of interest (e.g. mortality, labor productivity, conflict, exports),

it remains unclear whether these weather-sensitivities are reflective of long-run climate

sensitivity of social welfare, mainly due to the possibility of adaptation.

Many recent studies that utilize short-run weather fluctuations to identify causal im-

pacts of temperature shocks then combine these coefficient estimates with climate model

projections to estimate the expected costs of future climate change. What might be some

of the limitations this approach? Suppose the temperature-output response functions with

8Sudarshan et al (2014) find similar plant-level productivity declines among Indian manufacturers, even
when controlling for region, firm, and individual-specific factors.
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and without long-run adaptation are as depicted in Figure 1. If what one is interested

in from a policy standpoint is the true long-run social costs of climate change, (V0 − V1),
then estimating this using short run panel impacts, (V0−V2), might overstate damages by

(V1 − V2), which is the extent of adaptation which occurs over the long run.

In particular, the realized welfare costs of climate change will be highly sensitive to the

scope, speed, and adjustment costs associated with adaptation in the long-run. This paper

focuses on the first of these three important parameters.

How important is adaptation for climate policy? Generally speaking, one can imagine

three stylized possibilities. First, adaptive adjustments may be effective at reducing climate

impacts, and occur quickly and at low cost, in which case using short-run weather sensi-

tivities to estimate long-run climate damages would overstate the urgency of public policy

in addressing climate change. Alternatively, it may be the case that adaptive investments

occur slowly, are prohibitively costly, and/or suffer from various market failures or collec-

tive action problems. This would suggest that economic damages under climate change

would likely be large, implying a more substantial role for public policy in addressing future

climate threats. A third possibility is that, regardless of the potential effectiveness of some

adaptive investments, the set of adaptation options actually shrinks in the long run, due

to the depletion of finite resource stocks such as fossil aquifers or ecological buffer capacity.

The economic literature on adaptation has to date focused primarily on agricultural

yield (Mendelsohn et al, 1994; Mendelsohn et al, 2000; Schlenker and Roberts, 2011; Butler

and Huybers, 2012; Burke and Emerick, 2016). The evidence is mixed, with some studies

suggesting substantial scope for adaptation to heat stress, and others finding weak or

inconclusive evidence that farmers adapt to changes climate.9

Recently, Barecca et al (2016) find evidence for adaptation in the context of health

responses to temperature shocks. They find that the mortality impacts of heat stress in

the United States, which are most acute in months with days above 90◦F, declined rapidly

over the twentieth century: by roughly 75 percent, most of it occurring after 1960.10 Using

state-level air conditioning penetration data, they find that the vast majority of this decline

can be explained by adoption of air conditioning as opposed to electrification or the number

of physicians in the state.

This paper addresses the prospect of adaptation to the impacts of heat stress on la-

bor inputs. The intention is to include all possible economic sectors that are subject to

temperature-related production impacts arising from thermal stress of the human body

— including labor supply, task productivity, and direct disutility — and to estimate the

extent of potential future adaptation using observed (as opposed to simulated) data. In

9A limited number of global and regional adaptation cost assessments exhibit a large range and have
been completed mostly for developing countries, with the most recent and most comprehensive to date
global adaptation costs range from $70 to more than $100 billion annually by 2050 (World Bank, 2010).
But the quantity and quality of local studies varies by sector with more treatment of adaptation in coastal
zones and agriculture (Agrawala and Fankhauser, 2008).

10Barecca et al (2016) use daily mean temperatures, and find that days with mean temperatures above
80◦F cause the majority of temperature-related mortality.
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most OECD countries, non-agricultural output accounts for over 95% of total income,

which arguably makes adaptation in the context of non-agricultural production of central

importance in estimating the true social costs of carbon.

2.3 A Simple Model of Adaptation to Labor Impacts of Temperature

Stress

This section outlines a simple model of adaptation to the production impacts of temper-

ature stress, beginning with a brief discussion of key temporal dimensions of adaptation

decisions.

The types of adaptation mechanisms available will depend crucially on the time-frame

of interest. For instance, in the very short run, individuals may adapt by adjusting labor

supply, either on the intensive margin at the daily level, with individuals choosing to work

more or less hours or shifting the timing of work hours during a given day, or on extensive

margin at the daily level, choosing not to work at all if conditions are bad enough (Zivin

and Neidell, 2014).11 Individuals may also adjust exertion levels (labor effort), or engage

in other forms of defensive behavior (e.g. wearing different clothing) without changing

labor supply (Park and Heal, 2013). In the longer run, persistent temperature shocks

may lead workers to change occupations, migrate to a more hospitable climate, or exit the

labor force completely due to health concerns or disamenity costs. Presumably, these latter

adjustments entail substantially higher pecuniary and non-pecuniary costs, and would only

be justified under more extreme levels of environmental stress.

Similarly, flow expenditures on heating and cooling may in most cases be easily adjusted

in the short run, but changes in the stock of heating and cooling equipment – for instance,

upgrading an air conditioner from window unit to central AC, or retrofitting a home with

better insulation – may require longer time horizons.

It is also possible to draw a distinction between secular (private) and directed (public)

adaptation responses: that is, to differentiate between those adaptation mechanisms that

one would expect to occur naturally in a market economy as a result of changing climates or

incomes, and those that would not occur due to important market failures(Table 1 provides

a heuristic of adaptation mechanisms by type). For the purposes of this study, I will refer

to the former class of adaptation mechanisms as secular adaptation, the latter as directed

adaptation, following Agrawala and Fankhauser (2008). I discuss potential market failures

in adaptation investment in the Appendix.

The empirical strategy employed in this paper takes a revealed preference approach to

inferring the extent of adaptation to climate stress, and thus makes the conservative as-

sumption that what is measured econometrically encompasses some combination of secular

and directed adaptation responses that represent the optimal adaptation bundle. Specif-

ically, comparing the realized impacts of temperature stress on output/productivity net

of short run adaptations within each region with the impacts of temperature stress given

11The environmental and health literatures typically refer to this as “avoidance behavior”.
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different levels of long run adaptation across regions allows the econometrician to estimate

the expected extent of adaptation in the long run, subject to some simplifying assump-

tions regarding the availability of adaptation strategies (uniform across regions) and lack

of barriers to spatial equilibrium in observed labor markets.12

2.4 Production Impacts of Heat Stress

To motivate the empirical strategy, I outline a partial equilibrium model of local adaptive

investment in response to the production impacts of heat stress.

Define production-relevant temperature stress, TE , as a measure of extreme heat. For

instance, this could be the number of extreme heat days per year, analogous to the concept

of killing degree days in the agricultural literature. TE is a random variable, the historical

distribution of which is a reflection of average climate in that area. The existing literature

suggests that TE can reduce human task productivity (i.e. labor productivity) and may

affect the direct utility of workers. Let us make the simplifying assumption that extreme

heat does not significantly affect the productivity of non-labor inputs (e.g. the productivity

of capital).13

Consider the production function Y (A,L), which take as inputs labor productivity (A),

and labor supply (L), where labor supply includes both dimensions of hours and effort.

While the focus here is on labor, it is worth noting that a possible adaptive response

to heat stress may be to adjust capital-labor ratios of production, depending on which

factor is more temperature sensitive. As Kahn (2016) and Heal and Park (2016) point out,

estimating such responses constitutes an important area for future research.

Allowing labor supply and productivity to depend on temperature means that output

is a function of experienced temperature:

Y (A,L) = Y (A(TE), L(TE))

We abstract away from principal-agent problems or labor market frictions, such that

the revenue impact of a productivity shock is completely internalized.14 Workers maximize

utility, U(Y, L, TE), which is an increasing function of production (income), and decreasing

in labor supply, labor effort, and temperature stress, which causes direct disutility ( ∂U
∂TE <

0).

The task productivity literature suggests that physical and cognitive task productivity

falls with extreme temperature — both heat and cold. Here, we focus on the hot end of

12Put a different way, by leveraging daily weather data combined with cross-sectional variation in panel
estimates, I estimate the gap between climate sensitivity inclusive of 1) short run (intra-annual) adaptation
mechanisms, and 2) long run (decadal) adaptation mechanisms.

13It is possible that the effectiveness of physical capital may be sensitive to extreme heat. For instance,
heat rates at power plant are affected by ambient temperature, and electronics are known to malfunction
at high temperatures. Whether extreme heat has a first-order effect on capital product is a question that
remains yet unresolved.

14A stylized representation of a production context that has these features may be a family-owned,
family-operated business, or a one-man rickshaw operation.
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the temperature-task productivity relationship, such that ∂A
∂TE < 0.15 Existing studies also

suggest that labor supply, defined here as a combination of labor hours and labor effort,

reacts negatively to extreme temperature, in part due to direct disutility, in part due to

lower productivity: ∂L
∂TE < 0.16 It is possible to show that, absent strong income effects,

temperature deviations from the thermoregulatory optimum will affect labor hours and

labor effort in the same direction (Park and Heal, 2013), such that heat shocks will reduce

effective labor product, net of optimizing responses of workers who may reallocate labor

effort and hours accordingly.

As such, I assume that ∂A
∂TE < 0 and ∂L

∂TE < 0. This implies that extreme heat will

reduce total output due to this reduction in total labor product:

dY [A(TE), L(TE)]

dTE
< 0

Importantly, given utility-maximizing workers who have some flexibility in their choice

of work hours or effort, realized output fluctuations in response to temperature shocks

should be net of adjustments on the labor supply and labor effort margins.

2.4.1 Long-Run Adaptive investments

Suppose firms undertake structural adaptive investments, α, which reduce the negative

impact of extreme heat stress by reducing the temperature sensitivity of workers’ task

productivity:
d2A

dTEdα
> 0,

and/or reducing the temperature sensitivity of labor supply (effort and hours):

d2L

dTEdα
> 0.

In principle, firms might be able to engage in such adaptive investments in both the

short and long run: for instance, operating existing window AC units more intensively

in response to a few hot days (short run); deciding to install central AC in response to a

perceived shift in the long-run climate distribution (long run). Here, I focus on the decision

to invest in long-run adaptive capital, which may take the form of structural investments

such as centralized cooling systems or cultural capital in the form of procedural norms: for

instance, adjusting daily worker schedules to minimize heat stress, as has been documented

in many tropical countries. One would expect such long-run investments to be a function

of the average climate, αit(E(TE)).

15The empirical analysis presented below suggests that the labor productivity impacts of extreme cold
are relatively small, at least in developed economies such as the United States.

16Graff Zivin and Neidell (2014) document significant changes in hours worked in response to extreme
heat and cold, especially in highly exposed sectors.
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Firms will choose to invest in adaptive capital such that the expected marginal benefit

associated with additional adaptive investment (in terms of heat-related damages avoided)

is equal to the marginal cost. In an unchanging climate, a reasonable proxy for expected

benefits would be provided by the average historical incidence of extreme heat events over

the period in which the local climate has been observed:

E(TE) ≈
t∑

τ=1

TEiτ

and the output reductions they have caused, where τ represents the first relevant period.

Thus, let us assume that these adaptive investments are sufficiently lumpy so as not to be

adjustable in response to acute heat stress (the short run), but rather have been chosen

prior to the realization of current extreme heat stress, TEiτ .

The production function can be written as:

Yit(A,L) = Yit(A(TEit , αit(
t−1∑
τ=1

TEiτ )), L(TEit , αit(
t−1∑
τ=1

TEiτ ))),

where
dA

dTE
< 0,

δ2A

δTEδα
> 0;

dA

dT
(TE , α)

dL

dTE
< 0,

δ2L

δTEδα
> 0;

dL

dT
(TE , α)

Output is a function of labor productivity, labor supply, and adaptive capital. Labor

productivity and supply at any given point in time will depend not only on the contem-

poraneous temperature, Tit, but also the history of temperature shocks in that location —∑t−1
τ=1 T

E
iτ , that is, the local climate — due to the fact that adaptive capital stock will have

been chosen to maximize profits subject to the conditions mentioned above.

2.4.2 Application to empirical strategy

The overall effect of adaptive investments will be to reduce the short-run temperature-

sensitivity of total output:
d| dYit
dTE

it
|

dα
< 0.

Thus, in the long run, one would expect firms in hotter climates (i=H) to exhibit higher

levels of adaptive investment than cooler ones (i=C):

αH > αC ;

given

E(TEH ) > E(TEC ).
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This paper aims to estimate the production impacts of extreme heat stress, dYit
dTE

it
, in

addition to the expected extent of long run adaptation, αH − αC , by using differences in

realized production impacts across various climate regions:

dYC

dTEC
− dYH

dTEH
.

3 Data and Summary Statistics

3.1 County-Level Payroll Data

I use payroll data from the County Business Patterns database from 1986-2012, which

records annual and 1st quarter payroll for roughly 3,000 US counties by five-digit NAICS

classification. Payroll includes all forms of compensation, including salaries, wages, com-

missions, dismissal pay, bonuses, vacation allowances, sick-leave pay, and employee contri-

butions to qualified pension plans paid during the year to all employees.17 County specific

payroll data is measured at the annual level.

The choice of payroll as the dependent variable of interest, rather than, for instance,

total profits or total income, is motivated by two factors. First, payroll data from the

CBP allows one to isolate production impacts on non-agricultural sectors, as well as to

distinguish, as I do below, between sectors that are more or less exposed to temperature

stress. Second, changes in per capita payroll provide close proxies to changes in total and

marginal labor product, separately from changes in capital expenditures. Importantly,

payroll is less likely to include direct expenditure on heating or cooling, which may be the

case for total income. This means that one is in principle able to estimate the implied

marginal benefits of adaptation (in terms of reduced production impacts) separately from

the marginal costs.18

Thus, changes in payroll might be thought of as net fluctuations in the wage bill after

firms and individuals each optimize internally, be that in the form of adjustments to labor

supply, labor effort, involuntary changes in labor productivity, or short- and long-run

investments in adaptive behavior.

17For corporations, payroll includes amounts paid to officers and executives; for unincorporated busi-
nesses, it does not include profit or other compensation of proprietors or partners. Payroll is reported before
deductions for social security, income tax, insurance, union dues, etc. This definition of payroll is the same
as that used by the Internal Revenue Service (IRS) on Form 941 as taxable Medicare Wages and Tips (even
if not subject to income or FICA tax).

18For instance, if a manufacturing firm pays workers’ wages as a function of hours worked and items
produced, fluctuations in payroll arising from temperature shocks would reflect changes in labor supply
and labor productivity (as well as, in principle, demand for the product itself) which arise in response to
heat stress. If, in addition, firms respond by running air conditioning equipment at a higher utilization
rate, this added cost would be reflected in lower profits or net income, thus conflating some portion of
realized output shocks with short-run flow expenditures on adaptive capital. Payroll, which more closely
approximates marginal product of labor than capital, seems less likely to do so.
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3.2 Daily Weather Data

County-level payroll data is matched with daily weather data from the PRISM model, which

provides temperature and precipitation readings for a 2km x 2km grid of the contiguous

United States. Daily max, min, and average temperatures, in addition to precipitation are

area-weighted to the county level, and variables containing the number of days with daily

maximum temperatures in a series of 10◦F bins are constructed by county and year.

Past literature has documented a persistent, non-linear relationship between tempera-

ture and economic outcomes, particularly in the context of extreme heat stress (Schlenker

and Roberts, 2009; Hsiang, 2010; Deschenes and Greenstone, 2011; Burke and Emerick,

2016; Barecca et al, 2016). Where data has been available, this relationship has been

captured using the concept of temperature days: for instance, growing degree days, GDD,

in the case of agriculture, which measure the amount of time a crop is exposed to tem-

peratures between a given lower and upper bound, with daily exposures summed over the

growing season to ascertain annual growing degree days.

Here, I use the concept of extreme heat days, which are defined as days with daily max

temperatures above 90◦F, following Deschenes and Greenstone (2011). Deschenes and

Greenstone (2011), Hsiang (2010), Sudarshan (2014), find days above 80◦F, 85◦F or 90◦F

respectively to be significant heat thresholds that lead to discernible impacts on human

performance in field settings.19 This concept is also analogous also to Killing Degree Days

in the agricultural literature, which has a kink point of roughly 77◦F, 25◦C (Schlenker and

Roberts, 2007; Burke and Emerick, 2016).20

3.3 Air Conditioning Data

Air conditioning penetration by county and year is constructed using county level resi-

dential AC information from the 1980 decennial census, and combining it with data on

changes in residential AC penetration over time by census region from the Energy In-

formation Agencies Residential Energy Consumption (REC) surveys. I use the reported

penetration rates in 1980 as a basis and then extrapolate based on the region-level growth

rate of central, window and total AC penetration recorded by RECS, which provide pen-

etration rates by region from 1980 to 2009 with a two or three-year frequency. I linearly

interpolate growth rates for the missing years and assign counties their corresponding re-

gional growth rate. Using this growth rate and the observed penetration rate in 1980 I

create a measure of penetration in every county in each year from 1980 to 2014. I top-code

penetration at 100%. Our primary specification uses the penetration rate of total AC but

19The kink point is lower in lab studies (e.g. Sepannen, 2008). This could be due to the fact that
most lab experiments impose something akin to a no-adaptation constraint. Participants are required to
concentrate on challenging tasks under temperature stress, without the ability to rest between sessions,
adjust physical surroundings, or adapt production techniques.

20I also use alternative measures of temperature shocks, including cooling degree days and average annual
temperatures (daytime high temperatures inclusive of humidity), and present these results in the appendix.
For the most part, the results are consistent across different measures of temperature, though they are
sharpest using the extreme heat day definition.
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I conduct the same exercise for central and window AC and estimate all models with all

three measures of AC penetration. The results across all three measures are qualitatively

similar.

Given the focus on production impacts operating through labor inputs, the ideal mea-

sure of AC would include commercial and/or industrial AC penetration. Such data was

not available. However, available evidence suggests that commercial and residential AC

penetration rates are highly correlated within regions. For instance, according to the EIA,

74% of commercial buildings in the Northeast region had some form of AC as of 2009,

while approximately 80% of residential buildings did. In the East South Central region,

the commercial and residential penetration rates were 90% and 95% respectively. Based

on this observation, and the assumption that local determinants of residential and com-

mercial AC are likely to have shared components (see Biddle, 2008), I take residential AC

as a proxy for total AC at the county level.

3.4 Summary Statistics

Over the period 1986 to 2012, the average county in the contiguous United States had

an average annual temperature of 54.6◦F, and experienced approximately 25 days with

temperatures above 90◦F per year. This masks tremendous variation across regions. Parts

of the Northeast and coastal regions of the West seldom experience any days above 90◦F.

Seattle and San Francisco experienced fewer than one such day per year on average over

the period. In contrast, parts of the South and Southwest regularly get more than 80 such

days per year. Figure 2 depicts the average incidence of 80◦F+ and 90◦F+ days across the

country, illustrating this variation graphically.

It is important to note that realized temperatures can vary considerably even within

small geographic locales (e.g. counties) depending on elevation, distance to bodies of

water, vegetation, or surface albedo. For instance, even within Los Angeles County, the

temperature on a given summer day may be 30◦F lower in Santa Monica, which is on the

coast, than it is in Pasadena, which is farther inland. To the extent that our measures of

local temperature are measured with (classical) error, we would expect the estimates of

the impact of heat exposure on production to be downward attenuated.

Figures 3, 4, and 5 depict imputed average AC penetration rates across the country in

the years 1990, 2000, and 2010 respectively, excluding Alaska and Hawaii. As of 1986, the

average residential AC penetration rate across all counties was 58%. By 2010, it had risen

to 69%. Once again, there is considerable variation across regions, both in initial levels of

AC penetration and rates of uptake over time. For instance, AC penetration in New York

City rose rapidly during the period 1986 to 2011, increasing from 55% to 89%. In Grady,

GA, AC uptake was much slower, from 62% to 69% over the same period (Figure 6). This

is despite the fact that most of Georgia experiences far more heat exposure than New York

on average: 70 days above 90◦F in Grady as opposed to 14 in New York City. Houston,

TX, on the other hand, had close to universal AC even as of 1986.
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Running simple OLS regressions in the cross-section suggests a strong correlation be-

tween productivity and average climate. Pooling all years in the sample, a region with

one more heat day (90◦F and above) per year on average features 0.478% lower non-

agricultural payroll per capita, controlling for precipitation and snow.21 This is consistent

with the cross-sectional gradient documented by Acemoglu and Dell (2010), who find a

within-country slope of roughly -1% per degree F increase in average annual temperature

across municipalities in North and South America.

4 Empirical Framework

I begin by describing the regression models used to estimate the relationship between tem-

perature and local output, as measured by payroll per capita. In each of the analyses

presented below, causal identification relies on a framework that leverages quasi-random

variation in annual temperature, netting out location-specific factors that may affect pro-

duction.22

4.1 Regression Framework

4.1.1 Main Effect

All of the analyses presented below are based on estimating variants of the following equa-

tion:

ln(yist) = ΣkβkTMAXitk+π1PRECit+π2PREC2SDit+γi+ηt+fs,i(Y EARt)+εist (1)

where yist is annual payroll per capita in county i, state s, and year t. PRECit and

PREC2SDit represent average annual precipitation and a variable indicating the number

of extreme precipitation events in each county year. Extreme events are defined as daily

precipitation totals two standard deviations above the county-specific average. The

variables γi and ηt denote county- and year-fixed effects respectively. γi controls for

time-invariant unobserved factors that may determine the relative productivity of county

i (e.g. human capital). ηt accounts for correlated shocks that are common across the

United States (e.g. recession years). fi,s(Y EARt) represents flexible time trends that are

allowed to vary at the state- or county-level, and control for smooth changes in payroll

over time as well as the potential for correlation between secular regional productivity

21Using annual average temperatures to check consistency with the existing literature, I find that coun-
ties with one degree F hotter annual temperatures are associated with -0.924% over the pooled sample. The
same coefficients are -2.34%, -1.04%, -0.24% in years 1990, 2000, and 2010 respectively. Moreover, fitting
a quadratic specification yields a single-peaked relationship between temperature and implied output, sug-
gesting an optimal temperature zone around 52◦F average annual temperature. Note that this is somewhat
lower than the physiological optimum implied by the medical and task productivity literature (65◦F). Some
of this may be due to the fact that average annual temperatures include nighttime low temperatures.

22For a detailed discussion of how the methods employed here relate to the existing literature on climate
adaptation, see Appendix.

14



trends not accounted for by annual population and year fixed effects.

The variables TMAXitk represent our measures of temperature, which are constructed

to capture exposure to the full distribution of temperatures in a given year. The TMAXitk

variables are defined as the number of days in a count-year in which the daily maximum

temperature is in the kth of 9 temperature bins ranging from 0◦-10◦F to 90◦F and above.

In practice, the 70◦F-79◦F bin is the excluded group, so the coefficients on the other bins

are interpreted as the effect of exchanging a day in the 70◦F-79◦F range with a day in other

bins. As noted by Deryugina and Hsiang (2015) and Barecca et al (2016), the primary

functional form restriction imposed by this model is that the impact of the daily max

temperature on annual payroll is constant within 10◦F bin intervals.

I use the number of days above 90◦F as the primary indicator of extreme heat. This is

motivated by previous studies, which find strong impacts of heat stress on human behavior

and task productivity beginning around 85◦F, as well as the observation that most pro-

ductive activity occurs during the daytime, motivating a choice of daily max as opposed to

min or mean temperature as the primary measure. Not specifying additional bins above

or below this threshold represents an effort to remain as non-parametric as possible while

also obtaining estimates that are precise enough to permit meaningful interpretation.23

In all versions of equation 1, the βk parameters are identified from inter-annual variation

in temperature realizations. It seems difficult to come up with other potential confounders

that are not captured by the rich controls above, suggesting the identifying assumptions

are likely to be satisfied.

4.1.2 Estimating Labor Impacts

To isolate the impact of temperature on non-agricultural sectors, I subtract agricultural

payroll from total annual payroll for each county-year, and run a version of equation 1 that

uses log non-agricultural payroll as the dependent variable.

To further isolate the impact on labor inputs, I examine impacts by industry, where j

denotes industry classification:

ln(yistj) = ΣkβkTMAXitk + π1PRECit + π2PREC2SDit + γi + ηt

+ fs,i(Y EARt) + εistj (2)

Determining ex ante which industries are more or less susceptible to temperature stress

in an empirically executable way is not an exact science, in part because CBP payroll

data is categorized by two-digit NAICS parent codes as opposed to specific occupations.

23I focus on the 90◦F threshold as a conservative definition of extreme heat, though the results are
robust to alternative specifications, including multiple critical temperature-bins and a fully non-parametric
temperature bin specification. The main results are also robust to alternative measures of temperature,
including those that have been used in the literature in the absence of daily weather data, including annual
average temperature and cooling degree days.
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Each parent category (e.g. Construction, Retail, Transportation) includes many specific

occupations that may feature vastly different working environments. For instance “Trans-

portation” includes “Rail-Track Laying and Maintenance Equipment Operators”, who are

likely to work outdoors, as well as “Air Traffic Controllers” who are far less likely to work

outdoors.

As a conservative categorization scheme, I follow the National Institute for Occupa-

tional Safety and Health’s (NIOSH) classification of “highly exposed” industries: namely,

construction, manufacturing, utilities, transportation and mining (I exclude agriculture

from all remaining analyses).24 I classify the rest – retail, wholesale, health, education,

and finance-insurance-real estate – as “not exposed”. To the extent that the comparison

of interest is between highly exposed and non-exposed occupations and this classification

only crudely approximates the true subset of exposed occupations, we would expect the

analysis to provide an underestimate of the difference, as we would be measuring impacts

for air traffic controllers alongside railway repair workers within the same “highly exposed”

category, and similarly for occupations that may be more likely to work outdoors in the

“non-exposed” category.

As described in greater detail below, demand-side factors may affect our estimation of

labor-related production impacts. For instance, hot days may induce greater demand for

certain products that are complementary to consumption activities during warm weather

(e.g. ice cream). They may also lead to avoidance behavior or adverse health outcomes

that directly affect demand for services and thus annual payroll (e.g. emergency room visits

to hospitals). I attempt to account for some of these factors by examining specific sectors

that are likely to be more or less affected by intra-annual demand-side factors separately

as well. If demand-side impacts of heat stress and supply-side production impacts operate

in the same direction, our estimates of the production impacts would be biased upward.

4.1.3 Estimating Adaptation

To measure adaptation, I first classify counties according to their average climate. The

relevant definition of average climate will depend, in part, on the aspects of the climate

distribution that affect the relevant investment decisions. To the extent that the existing

literature finds non-linear impacts of extreme heat (as opposed to impacts from shifts in

average annual temperatures), one might expect the relevant metric to be the expected

number of extreme heat days over time.

In practice, I use various moments of the long-run climate distribution to define “cli-

mate”. The preferred specification categorizes counties by the average number of hot days

with maximum temperatures above 90◦F, though the results are qualitatively similar in

24“Highly exposed” industries include industries where the work is primarily performed outdoors —
agriculture, forestry, fishing, and hunting; construction; mining; and transportation and utilities — as well
as manufacturing, where facilities are typically not climate-controlled and the production process often
generates considerable heat.
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specifications that use a lower temperature threshold (e.g. 80◦F) or average annual tem-

peratures. All specifications use averages over the period 1986-2012 for consistency.25

I measure the extent of potential long-run adaptation in two ways. First, I run equation

2 separately by quintile of the historical climate distribution, focusing on impacts for highly

exposed industries. Note that many “highly exposed” industries involve work that is both

outdoors and indoors, especially in the case of manufacturing. Second, I augment equation

2 by adding interactions of the temperature variables with county-specific measures of

long-run climate, for the full sample:

ln(yistj) = ΣkβkTMAXitk + Σkθ
CL
k TMAXitk × ¯TMAXi,k=9 + ω ¯TMAXi,k=9

+ π1PRECit + π2PREC2SDit + γi + ηt + fs,i(Y EARt) + εistj (3)

The coefficients θCLk on the interaction term measure whether the effect of an additional

day in a given temperature range is affected by the average historical incidence of hot days,

relative to the effect of the average historical incidence on a day in the omitted 70◦F to

79◦F bin. According to the model presented in section II, we would expect places that

experience greater heat exposure on average to be better adapted to heat stress, and thus

experience lower marginal impacts per hot day. This would result in a positive interaction

term for days above 90◦F.

4.1.4 Exploring the Role of Air Conditioning

To assess the role of air conditioning in reducing the impact of extreme heat on production,

I augment equation 2 with measures of air conditioning penetration. I interact interpolated

AC penetration at the county-year level with the temperature variables to estimate the role

that AC may have played as a modifier on the effect of hot days on production:26

ln(yistj) = ΣkβkTMAXitk + Σkθ
AC
k TMAXitk ×ACit + λACit

+ π1PRECit + π2PREC2SDit + γi + ηt + fs,i(Y EARt) + εistj (4)

The 70◦F to 79◦F temperature bin is again the excluded group among the k temperature

ranges. The interaction term thus measures whether the effect of an additional day in a

given temperature range is affected by the average AC penetration rate in that county-

year, relative to the effect of the average historical incidence on a day in the omitted 70◦F

to 79◦F bin. The hypothesis is that the coefficients on the interaction terms (θACk ) will

be positive for hot days (k=9), suggesting that investment in AC mitigates the marginal

impact of hot days on production. The interpretation assumption being made in using

residential AC is that the determinants of a total AC both across and within counties are

25The primary results are robust to using definitions that use previous weather realizations – for instance,
averages over the period 1950 to 1985 – instead.

26I also do the same for average AC for the entire period (1986-2012), as a check against results being
driven by the AC interpolation scheme.
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similar to the determinants of residential AC over the period 1986-2012.

5 Results

5.1 The Production Impacts of Heat Exposure: County-Level Payroll

Per Capita

Figure 7 provides a binned scatterplot that motivates the analyses that follow. It shows

the relationship between log payroll per capita and the number of hot days by percentile

of the hot day distribution, controlling for average differences across counties and years,

as well as the other weather controls and time trends noted in equation 1. It suggests a

strong negative relationship between hot days during the year and production that year.

Table 2 presents the results from running versions of equation 1 with state- and county-

specific time trends. The dependent variable in this case is non-agricultural payroll per

capita. Robust standard errors are clustered at the state by year level to allow for spatial

correlation of error terms within a given state and year. The estimates suggest that an

additional hot day causes a -0.03% (se=0.007) decline in payroll per capita on average. This

means that a year with 10 more hot days results in approximately 0.3% lower payroll per

capita for the average U.S. county, or that, in any given year, hot days (of which there are

on average 25) reduce total per capita payroll by approximately -0.75% from what would

otherwise have been the case were all counties to experience the ideal working temperature

year-round.

5.2 Exposed versus Non-Exposed Industries

Figures 8 and 9 present binned scatterplots for highly exposed and non-exposed industries

respectively. They suggest more acute impacts in sectors where workers are exposed to the

elements. An additional hot day causes a statistically significant -0.11% (se=0.02) decline

in payroll per capita in highly exposed industries, as opposed to a statistically insignificant -

0.016% (se=0.010) decline in non-exposed industries. In highly exposed sectors, a year with

10 additional hot days reduces labor product by approximately 1.1%. This corresponds to

a more than 8-fold difference between exposed and non-exposed sectors. These results are

consistent with a story of labor productivity decline due to reductions in cognitive capacity

and physical functioning from thermal stress of the human body, as well as shocks arising

from reduced concentration and increased mistakes, reduced labor effort, and reduced labor

supply.27

27Note that while there may be some bias due to selection in the location of highly exposed industries
in the cross section (industries that are highly exposed may choose to locate in locations that are typically
colder) our panel approach removes this bias. It is also worth noting that many highly-exposed industries–
again think of construction – must take place in places that are both hot and cold. While construction
workers in hot places may choose to work differently than those in colder places earlier in the morning for
example it is not feasible to not have construction as an industry in Houston. Changes in worker behaviors,
meanwhile, are what we would consider structural adaptation, the impact of which we are attempting to
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Figures 10, 11, and 12 present analagous binned scatterplots for construction, education,

and healthcare sectors respectively. As might be expected, construction payroll declines

in year with more hot days, likely due to reduction in labor supply and/or productivity.

Payroll in the education sector is unaffected by hot temperature. Healthcare payroll seems

to increase slightly during years with more hot days, consistent with the existing literature

on mortality impacts of heat stress.

5.3 Evidence for Long-Run Adaptation: Comparing Across Climatic Re-

gions

Results from running the climate-specific regressions by quintile of the average hot day

distribution are reported in Table 3. A county in the bottom quintile of the extreme

heat day distribution (e.g. San Francisco, Seattle) exhibits a short-run weather sensitivity

of approximately -0.35 percentage points (se = 0.12) per extreme heat day (90◦F+). A

relatively hot county at the top quintile of the US average temperature distribution (e.g.

Houston, Orlando) has a short-run weather sensitivity of -0.13 percentage points (se = 0.05)

per extreme heat day: roughly a third the impact. As columns (2) through (4) suggest,

the marginal impact of a hot day seems to decline monotonically as one moves to climates

that experience more hot days on average. Column (1) of Table 3 presents the results from

running equation 3. The coefficient on the interaction term between the number of hot

days in a given year and average climate is positive, suggesting that the impact of a hot

day on production declines as one moves to places that are hotter in expectation.

The impact of an additional hot day is roughly 63% smaller in counties in the top

quintile of historical extreme heat incidence, compared to counties in the bottom quintile,

suggesting substantial scope for adaptation given appropriate investments.28 Whether

because of AC or other adaptations, private or public, the same 90◦F day seems to have a

very different short run impact in Houston than it might in Boston. While the reduction

in temperature sensitivity associated with moving from less to more heat-prone areas is

large, it is worth noting that, even in these presumably very well-adapted areas, extreme

heat days have statistically significant and economically meaningful impacts on output.

These estimates suggest that, at least for highly exposed industries such as manufacturing,

construction, or transportation, even those counties in the top quintile of extreme heat

exposure suffer routine heat-related output impacts of up to -11% per year, given the high

incidence of hot days. This is despite near universal air conditioning in many parts of the

US South and Southwest.

The fact that the average realized impacts are not equalized across regions suggests

either that adaptation costs are not uniform, and/or that there are non-trivial behavioral

barriers or spatial rigidities in production that keep firms from achieving the optimal level of

measure.
28Running the analysis by thirds yields similar results. Both specifications suggest monotonically de-

clining temperature sensitivities as one moves to regions with greater degrees of perennial heat stress.
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adaptation implied by the simple, friction-less model presented in section II. For instance,

it might be the case that certain outdoor industries like construction or mining feature

realistic limits to adaptation (at least given current technologies), but must due to their

non-traded nature or geographic restrictions take place in sub-optimal climates. I leave a

more careful (structural) analysis of these factors for future research.

5.4 The Role of Air Conditioning

Nearly all households in Houston had AC as of 2009, of which 80% were central AC units. In

contrast, only 20% of Massachusetts households had central AC, and 21% did not have air

conditioning units altogether.29 Such differences in AC represent but one of a potentially

very large number of adaptations that local workers, consumers, and firms have evolved

over the years in response to different climates. It is worth noting that, while average AC

penetration and incidence of hot days is highly positively correlated, it appears that the

relationship is far from uniform, especially in hotter regions (Figure 13). This is consistent

with some hot but poor regions such as Grady, GA having experienced slow AC uptake

relative to what climatic averages might suggest.

Table 4 presents the results from running augmented versions of equation 2 that interact

temperature and AC penetration rates. Columns (2) and (3) present interaction terms

between hot temperature and average AC penetration by county (1986-2012). Columns (4)

and (5) present interaction terms between hot temperature AC penetration by county-year.

The coefficients on the interaction terms between hot temperature and AC penetration are

positive, suggesting that having more AC helps protect against the production impacts of

hot days. The interaction term between AC and cold days (days with max temperature

below freezing) is not significant, further suggesting that the effect is operating through

the protecting impact of air conditioning against heat.30

6 Discussion and Conclusion

This paper uses county-level payroll and daily weather data to identify the impact of hot

temperature on production, and the potential for adaptation to heat stress in the long run.

The findings suggest significant but not unlimited scope for adaptation to climate change

in the context of production impacts arising from heat stress of labor inputs, focusing on

non-agricultural sectors.

29For average Texas households, 18% of total energy usage is devoted to cooling, compared to 1% for
Massachusetts households.

30The use of residential (as opposed to commercial or industrial) AC data may speak to one channel
through which exposure to extreme heat has been hypothesized to impact labor productivity. Hot days
are normally preceded by hot nights that may make it difficult to sleep. A worker who struggles to sleep
the day before a hot day at work might display lower productivity because of lack of sleep, induced by
heat, rather than due to contemporaneous exposure to extreme heat at work. If this were the primary
mechanism, then one would expect to see an impact from increasing residential AC that makes it easier to
sleep on hot nights.
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I characterize implied climate adaptation by first estimating the short-run heat-shock

sensitivity of local output. For the US as a whole, an additional day with daily max

temperatures above 90◦F results in a -0.03% reduction in the level of per capita payroll

that year. Given well-documented wage rigidities, it seems likely that a non-trivial portion

of these impacts are related to, though not entirely explained by, reductions in labor supply

and labor productivity.

These effects are non-trivially large. Assuming, perhaps conservatively, that impacts

scale linearly with the number of extreme heat days, a year with 10 additional 90◦F-

or-above days would result in approximately -1.1% lower output per capita in exposed

industries for the average US County, and up to 3.5% lower output per capita in milder

climates such as the Northeasts or Pacific Northwest, which are far less accustomed to such

heat exposures. While an unlikely scenario, if the entire country were to experience a year

with extreme heat stress corresponding to an average year in Houston, which experiences 92

days per year with daily max temperatures above 90◦F, the US economy would experience a

-2.7% decline in total output per capita: -10.1% per capita in highly exposed sectors. This

study thus lends evidence in support of adding labor productivity impacts into integrated

assessment models of climate change, which typically assume total damages on the order

of a few percentage points of GDP by 2100.

I find substantial geographic variation in short-run impacts of heat stress, suggest-

ing that adaptation depends in part on the history of weather shocks in a given locality:

notably, the average number of hot days (above 90◦F). These estimates imply that the

productivity impacts in a world where agents engage in no adaptation may be as much

as three times as large as one in which all individuals adopt optimal adaptive technolo-

gies and norms, though it is unclear how quickly and at what cost such adjustment might

occur. Unlike simulation studies which trace the hypothetical costs and benefits of adap-

tation strategies through particular mechanisms, this analysis empirically estimates the

temperature sensitivity of local output and how this sensitivity varies with average local

climate. This method has the benefit of not requiring the analyst to simulate all adaptation

mechanisms.

While these estimates suggest substantial scope for adaptation in the long run, the

fact that temperature shocks exert statistically significant and economically meaningful

impacts on labor productivity even in the hottest and presumably well-adapted regions of

the United States suggests that there may be realistic limits to adaptation to increased heat

stress due to climate change: at least using existing technologies. Given much lower AC

penetration rates in much of the developing world (and even in other developed economies

in Europe and East Asia), these estimates suggest substantial labor productivity impacts

in the medium to long run, even with rapid uptake of AC.

The central methodological message of this paper is that it is possible to approximate

the extent of future adaptation by comparing the differences between short run heat-shock

sensitivities of local economies that have already optimally adapted to varying levels of
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local heat stress, echoing recent work by Barecca et al (2016). The intuition is that the cu-

mulative history of weather shocks in a relatively warm region today may provide a valuable

indicator for the extent of long-run adaptive investment that relatively cool regions may

eventually undertake in the future, assuming similar availability of adaptive technologies

(e.g. air conditioning, alteration of norms around time of work). In other words, cross-

sectional gradients in realized output sensitivities should reflect net-of-adaptation values

across different climates, an intuition that parallels work by Mendelsohn (1994) and others

using the Ricardian method in agricultural contexts, but also addresses critiques regarding

causal inference often associated with cross-sectional approaches.

This paper raises important questions for future research. For instance, how rational

or forward-looking are agents in making adaptive investments? That is, which climatic

mean do they use in making investment decisions? In choosing the HVAC system for a

manufacturing plant in Boston, a fully rational investor might make her decision based

on some weighted average of existing climate projections published by the IPCC. Given

limited bandwidth or lack of information, she may alternatively make a decision based

on an intuitive sense of historical climate averages. Whether and to what extent such

decisions vary systematically based on education or income may be relevant in assessing

the distributional consequences of climate mitigation policy, as well as the potential for

welfare-enhancing climate adaptation interventions.

Another set of policy-relevant questions involves the welfare economics of adaptation

investment. How much of the relevant adaptive investments will be in the form of private

goods, such as home air conditioning, versus local or global public goods, such as workplace

norms, electricity infrastructure (e.g. peak grid capacity), or new cooling technologies?

Moreover the production impacts documented here imply that it may be possible to uncover

adaptation cost functions using observed – as opposed to simulated – data. Though the

present analysis does not allow for detailed estimation of the costs associated with such long

run adaptations, similar analyses using richer data and/or structural estimation techniques

may be able to uncover adaptation cost functions. Given the paucity of reliable adaptation

cost estimates despite their policy importance, this seems to be a critical area for future

research.

Finally, a natural question that arises is whether the extreme heat impacts and scope

for adaptation documented here are reflective of what one might expect in other coun-

tries, particularly in the developing world. The substantial heterogeneity in temperature

sensitivities within the United States, combined with previous (larger) estimates of labor

productivity, mortality, and agricultural output declines due to heat stress in developing

countries (Schlenker and Lobell, 2010; Sudarshan et al, 2014) suggests that the long-run

impacts of climate change may be more severe for the developing world than previously

estimated. It is well-documented that rates of air-conditioning have historically tended to

follow income growth quite closely, and have neared saturation in warmer parts of the US

(Biddle, 2008; Davis et al, 2015). Based on this relationship and relatively low income lev-
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els for many households in warmer parts of South Asia, Latin America, and Sub Saharan

Africa, one might infer that these coefficients represent conservative damage estimates for

most of the developing world.31

More broadly, the fact that the relationship between hot days and output is significant

in the United States, one of the world’s wealthiest and technologically advanced economies,

underscores the climate-dependency of much of economic activity, and suggests furthermore

that there may be realistic limits to adaptation driven by rising incomes. Even if developing

countries such as India or China were to raise their standard of living to US levels, they may

potentially still experience temperature-driven productivity losses of multiple percentage

points output per year.

31Of course, to the extent that previous findings suggest that poor countries experience markedly different
climate impacts compared to rich countries (Dell et al, 2013), one must be careful in extrapolating analyses
of rich-countries to assess impacts in poorer regions or at the global level. However, the fact that most global
integrated assessment models have historically assumed mildly positive impacts of increased temperatures on
rich countries suggests that using data from rich countries to establish a lower bound on labor productivity
related climate impacts at the global level would be an important contribution.
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Tables and Figures

Figure 1: Figure 1. Stylized representation of the potential bias in estimating climate
damages without taking future adaptation into account, assuming that adaptation can
reduce impacts in the longer term.
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Table 1: Possible adaptation mechanisms in response to temperature stress

Notes: Some potential adaptation mechanisms, organized along the following dimensions of secular versus

directed, short-run versus long-run.
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Figure 2: Incidence of Hot Days per Year.
Notes: Top panel shows number of days with daily max temperature above 80◦F in 2010.
Bottom panel shows number of days with daily max temperature above 90◦F in 2010.
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Figure 3: Total Residential AC Penetration (window and central) by county in 1990.
Notes: Imputed residential AC penetration rates (in percentage of households) by county
in 1990. Includes residential window and central AC units.

Figure 4: Total Residential AC Penetration (window and central) by county in 2000.
Notes: Imputed residential AC penetration rates (in percentage of households) by county
in 2000. Includes residential window and central AC units.
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Figure 5: Total Residential AC Penetration (window and central) by county in 2010.
Notes: Imputed residential AC penetration rates (in percentage of households) by county
in 2010. Includes residential window and central AC units.

Figure 6: Imputed AC penetration in New York County, NY, and Grady County, GA,
1986-2012. Includes window units and central AC for residential dwellings. County-level
base values taken from 1980 census. Annual rates of change taken at the census region
level from RECS (2012).
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Figure 7: Payroll and Temperature
Notes: Residualized variation including county and year fixed effects, state-specific cubic
time trends and non-parametric controls for all other degree days. Days with maximum
temperature between 70-79◦F is the omitted category.
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Table 2: Measuring the Impact of Short-Run Heat Exposure on Annual Production.

(1) (2) (3) (4)

90◦F and above -0.000264∗∗ -0.000345∗∗∗ -0.000262∗∗ -0.000340∗∗∗

(0.0000933) (0.0000878) (0.0000931) (0.0000918)

0◦F to 9◦F 0.000140 0.0000730 0.000137 0.0000674
(0.000618) (0.000582) (0.000618) (0.000609)

10◦F to 19◦F 0.000676 0.000634 0.000677 0.000633
(0.000379) (0.000351) (0.000379) (0.000367)

20◦F to 29◦F 0.0000126 0.000230 0.0000190 0.000237
(0.000249) (0.000249) (0.000249) (0.000260)

30◦F to 39◦F 0.0000990 0.000114 0.000101 0.000114
(0.000201) (0.000195) (0.000201) (0.000204)

40◦F to 49◦F -0.0000111 0.000136 -0.00000849 0.000139
(0.000182) (0.000180) (0.000182) (0.000189)

50◦F to 59◦F 0.000182 0.000154 0.000184 0.000155
(0.000150) (0.000142) (0.000150) (0.000148)

60◦F to 69◦F 0.00000749 0.0000311 0.00000904 0.0000327
(0.000122) (0.000115) (0.000122) (0.000120)

Avg Precip -0.00313 -0.00406 -0.00314 -0.00404
(0.00245) (0.00228) (0.00245) (0.00238)

Extreme Precip Events -0.00152 -0.00340 -0.00150 -0.00337
(0.00467) (0.00389) (0.00467) (0.00407)

N 72781 72781 72781 72781
r2 0.993 0.996 0.993 0.996

Fixed Effects

County X X X X
Year X X X X
State-specific linear trends X
County-specific linear trends X X
State-specific cubic trends X
County-specific cubic trends X

Robust standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: The dependent variable is log non-agricultural payroll per capita. County and year
fixed effects suppressed in output. Robust standard errors are clustered at the state-by-
year level. The number of days with temperatures in the 70◦ to 79◦ bin is the omitted
category.
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Figure 8: Payroll and Temperature in Highly Exposed Industries.
Notes: Residualized variation including county and year fixed effects, and state-specific cu-
bic time trends and non-parametric controls for all other degree days. Days with maximum
temperature between 70-79◦F as omitted category.
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Figure 9: Payroll and Temperature in Non-Exposed Industries.
Notes: Residualized variation including county and year fixed effects, and state-specific cu-
bic time trends and non-parametric controls for all other degree days. Days with maximum
temperature between 70-79◦F as omitted category.

35



Figure 10: Payroll and Temperature in the Construction Sector
Notes: Residualized variation including county and year fixed effects, and state-specific cu-
bic time trends and non-parametric controls for all other degree days. Days with maximum
temperature between 70-79◦F as omitted category.
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Figure 11: Payroll and Temperature in the Education Sector
Notes: Residualized variation including county and year fixed effects, and state-specific cu-
bic time trends and non-parametric controls for all other degree days. Days with maximum
temperature between 70-79◦F as omitted category.
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Figure 12: Payroll and Temperature in the Healthcare Sector
Notes: Residualized variation including county and year fixed effects, and state-specific cu-
bic time trends and non-parametric controls for all other degree days. Days with maximum
temperature between 70-79◦F as omitted category.

38



T
ab

le
3
:

P
ro

d
u

ct
io

n
Im

p
ac

ts
b
y

Q
u

in
ti

le
of

C
li

m
at

e
D

is
tr

ib
u

ti
o
n

.

(1
)

(2
)

(3
)

(4
)

(5
)

Q
u

in
ti

le
1

Q
u

in
ti

le
2

Q
u

in
ti

le
3

Q
u

in
ti

le
4

Q
u

in
ti

le
5

9
0◦

a
n

d
a
b

ov
e

-0
.0

0
35

2∗
∗

-0
.0

02
02

∗∗
-0

.0
01

68
∗∗

-0
.0

01
44

∗∗
∗

-0
.0

0
13

8
∗∗

(0
.0

0
1
21

)
(0

.0
00

72
9)

(0
.0

00
51

7)
(0

.0
0
03

68
)

(0
.0

0
05

34
)

0◦
F

to
9◦

F
-0

.0
0
0
83

1
0.

00
12

2
0.

01
26

∗∗
0.

0
06

77
0.

0
39

1
(0

.0
0
1
84

)
(0

.0
02

45
)

(0
.0

03
89

)
(0

.0
0
83

6)
(0

.0
2
95

)

1
0◦

F
to

1
9◦

F
-0

.0
0
0
07

66
0.

00
11

6
0.

00
23

6
-0

.0
0
13

1
-0

.0
02

96
(0

.0
0
1
13

)
(0

.0
01

49
)

(0
.0

02
20

)
(0

.0
0
41

0)
(0

.0
1
67

)

2
0◦

F
to

2
9◦

F
-0

.0
0
0
52

3
-0

.0
01

53
0.

00
54

2
∗∗

∗
-0

.0
0
20

0
-0

.0
02

77
(0

.0
00

8
16

)
(0

.0
00

92
9)

(0
.0

01
48

)
(0

.0
0
18

0)
(0

.0
0
61

2)

3
0◦

F
to

39
◦ F

-0
.0

0
06

8
9

-0
.0

00
45

3
0.

00
26

6
∗

0.
0
00

50
5

0.
0
00

13
6

(0
.0

00
6
62

)
(0

.0
00

71
9)

(0
.0

01
07

)
(0

.0
01

14
)

(0
.0

0
27

1)

4
0◦

F
to

49
◦ F

-0
.0

0
02

3
9

-0
.0

00
45

6
0.

00
18

9
∗

-0
.0

0
17

1
-0

.0
02

89
(0

.0
00

6
27

)
(0

.0
00

70
1)

(0
.0

00
93

7)
(0

.0
0
10

1)
(0

.0
01

64
)

5
0◦

F
to

59
◦ F

0
.0

0
03

8
7

0.
00

03
92

0.
00

15
8

-0
.0

0
06

47
-0

.0
02

57
∗

(0
.0

0
05

3
6)

(0
.0

00
62

5)
(0

.0
00

81
1)

(0
.0

0
07

81
)

(0
.0

0
10

2)

60
◦ F

to
6
9◦

F
0
.0

00
0
27

9
0.

00
00

20
8

0.
00

10
7

-0
.0

00
14

2
-0

.0
0
03

59
(0

.0
00

4
52

)
(0

.0
00

55
5)

(0
.0

00
63

8)
(0

.0
00

69
6)

(0
.0

0
08

55
)

A
v
g

P
re

ci
p

-0
.0

0
2
59

-0
.0

16
0

-0
.0

20
8

-0
.0

2
01

-0
.0

1
08

(0
.0

0
9
50

)
(0

.0
11

1)
(0

.0
12

9)
(0

.0
1
06

)
(0

.0
16

1)

E
x
tr

em
e

P
re

ci
p

E
ve

n
ts

0.
05

8
5
∗∗

0.
02

15
-0

.0
12

4
0.

0
50

8∗
-0

.0
5
21

(0
.0

22
5
)

(0
.0

21
5)

(0
.0

25
8)

(0
.0

2
17

)
(0

.0
4
27

)

N
14

3
2
9

14
24

2
13

45
2

1
37

43
1
39

61
r2

0
.8

5
6

0.
86

9
0.

86
5

0
.8

7
8

0
.8

5
5

S
ta

n
d
a
rd

er
ro

rs
in

p
a
re

n
th

es
es

∗
p
<

0
.0

5
,
∗∗

p
<

0
.0

1
,
∗∗

∗
p
<

0
.0

0
1

N
ot

es
:

T
h

e
d

ep
en

d
en

t
va

ri
a
b

le
is

lo
g

p
ay

ro
ll

p
er

ca
p

it
a

in
h

ig
h

ly
ex

p
os

ed
se

ct
or

s.
A

ll
re

gr
es

si
on

s
in

cl
u

d
e

co
u

n
ty

an
d

ye
a
r

fi
x
ed

eff
ec

ts
w

h
ic

h
a
re

su
p

p
re

ss
ed

in
th

e
ou

tp
u

t,
a
s

w
el

l
as

st
at

e-
sp

ec
ifi

c
cu

b
ic

ti
m

e
tr

en
d

s
in

p
ay

ro
ll

.
R

ob
u

st
st

an
d

a
rd

er
ro

rs
a
re

cl
u

st
er

ed
a
t

th
e

st
at

e-
b
y
-y

ea
r

le
ve

l.
T

h
e

n
u

m
b

er
of

d
ay

s
w

it
h

te
m

p
er

a
tu

re
s

in
th

e
70

◦
to

79
◦

b
in

is
th

e
om

it
te

d
ca

te
go

ry
.

39



Figure 13: Average AC penetration by county and the average incidence of hot days with
temperature above 90◦F (1986-2012). Includes controls for per capita income by county.
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