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The True Cost of Air Pollution:
Evidence from House Prices and Migration

Daniel M. Sullivan∗

This draft: March 29, 2016

Abstract

In this paper, I present evidence that current economics research significantly
underestimates the effects of air pollution, regardless of the outcome of interest.
This bias exists even in quasi-experimental estimates and arises from the way
researchers define individual-level pollution exposure. A polluter’s effect on nearby
residents changes dramatically with the direction of the wind, and most popular
methods, including geographic diff-in-diffs and monitor-based interpolations, are
unable to account for such sharp changes in exposure over short distances. To solve
this problem, I use an atmospheric dispersion model, which explicitly accounts
for meteorological conditions, to determine the effect of every polluting firm on
every house in greater Los Angeles. I then estimate the effect of NOx emissions
on house prices and neighborhood composition using the exogenous variation in
emissions caused by the California Electricity Crisis of 2000 and a cap-and-trade
program in greater Los Angeles. The estimated price response is much larger than
past estimates and implies that the social value of the cap-and-trade program
is roughly $502 million per year, 15 times larger than the associated abatement
costs. However, when based on conventional measures of pollution exposure,
this estimated valuation is small and statistically indistinguishable from zero.
The estimated neighborhood sorting response suggests that, despite the high
aggregate value, low-income households may not have benefited much from the
improvement in air quality.
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1 Introduction

House price capitalization is routinely used to measure the social value of local amenities
which lack an explicit market. But the case of air pollution presents a puzzle: The house
price response to improved air quality is surprisingly weak compared to the expected
health benefits (Smith and Huang 1995). Studies since Smith and Huang (1995),
including quasi-experimental studies, have not resolved this discrepancy.1 Even more
puzzling, such a discrepancy exists only for pollution—it is absent for school quality
(Black 1999; Cellini, Ferreira, and Rothstein 2010), crime risk (Linden and Rockoff
2008; Pope 2008), and local cancer risk (Davis 2004). And it cannot be explained by
public ignorance of or indifference to the dangers of pollution (Neidell 2009; Moretti
and Neidell 2011).

In this paper, I show that this puzzle is a special case of a larger problem in the
economics literature on air pollution: Estimates of pollution’s effects are systematically
biased by how pollution exposure to individuals is measured. Pollution concentrations
spike sharply downwind of pollution sources, with sharp changes near the source
itself, e.g., immediately downwind and upwind of a highway. This undermines the
most common econometric tools used to study pollution—geographic difference-in-
differences and monitor-based interpolation—because they are unable to capture this
sharp geographic variation. This leads to contaminated treatment and control groups
and/or non-classical measurement error. The result is biased estimates, even with an
exogenous shock to pollution exposure and regardless of the outcome being studied.

In turn, these biased estimates lead to understated valuations of air quality regula-
tions and other programs like subsidies to clean energy.

I solve this problem using tools from atmospheric chemistry and show that house
prices respond dramatically to changes in air quality and that conventional methods are
unable to detect this response. Specifically, I measure local exposure using AERMOD,
an atmospheric dispersion model developed by the American Meteorological Society
and the EPA. AERMOD uses data on meteorology (e.g., wind and temperature at
multiple altitudes, pressure, surface roughness) and firms (e.g., smoke stack height,

1. See Section 2. For a family of two adults and one child, 1 µg/m3 of particulate matter (PM2.5)
costs about $1,600 in increased mortality risk alone, to say nothing of acute illness risk, decreased
quality of life, or the costs borne by other family members (see footnote 3). Chay and Greenstone
(2005) estimate a MWTP of $191 per 1 µg/m3 of TSP reduction. While assuming costless moving,
Bayer, Keohane, and Timmins (2009) estimate MWTP of $130 for 1 µg/m3 of PM10. Currie and
Walker (2011) find no significant effect on prices after a drop in NOx and CO near highway toll booths.
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diameter, gas temperature) to determine where pollutants go after leaving a firm’s
smoke stack. To resolve the usual concerns about the endogeneity of local pollution
exposure and housing decisions, I exploit the California Electricity Crisis of 2000 as a
natural experiment. The Crisis unexpectedly and permanently lowered NOx emissions
in southern California by precipitating the near collapse of RECLAIM, a then-nascent
cap-and-trade market for NOx, which hastened and synchronized firms’ adoption of
abatement technology.

Using AERMOD to determine who benefited from the Crisis reveals that the demand
for clean air is high while using conventional methods does not. Using AERMOD, I
estimate that the marginal willingness to pay (MWTP) to reduce exposure to NOx

emissions by 1 µg/m3 is $3,272, an order of magnitude larger than past estimates and
more in line with the expected health benefits. This implies that the benefit of the
RECLAIM cap-and-trade program to local residents is roughly $502 million per year,
much larger than the estimated abatement costs of $38 million per year.2 However,
when I use methods now standard in the literature, the estimated price response and the
implied social valuation of RECLAIM are small or wrongly signed and not statistically
different from zero.

AERMOD also makes it possible to address other questions, such as whether people
fully respond to invisible pollutants, and whether or not neighborhood demographics
change in response to pollution.

Many pollutants are hard to detect without instrumentation, which raises the
possibility that buyers with preferences about pollution exposure may suffer from
imperfect information or salience effects. I test for this by exploiting the chemical
relationship of NOx and ozone. NO2, a primary component of NOx, is highly visible,
but under certain atmospheric conditions it transforms into ozone, which is invisible but
far more toxic. The conversion rate of NOx to ozone varies predictably over the course
of the year, making it possible to test whether prices depend on long-run expectations
based on all currently available information, or whether they are sensitive to foreseeable
short-run changes in toxicity and visibility. I find that prices are much more sensitive
to visible NOx than they are to invisible ozone, consistent with a model where buyers
suffer from imperfect information, salience effects, or both.

2. This is the total benefit of decreasing NOx emissions from actual 1995 levels to the RECLAIM
cap in 2005, annualized at 3%. Abatement cost is based on SCAQMD’s tabulation of firms’ actual
equipment and the available abatement technology that would need to be installed to meet certain
abatement goals. The cost includes installation and ongoing operation of equipment (SCAQMD 2000).

2



I also find that the change in air quality induced a large demographic sorting
response at the neighborhood (block group) level, which has significant implications
for incidence. Neighborhoods that enjoyed bigger air quality improvements due to
the Crisis also saw their residents become richer and better educated; however, these
neighborhoods also saw a decrease in total residents and households. These effects
appear to be driven by low-education individuals (those without a high school degree)
leaving newly clean areas or moving into these areas at a lower rate. Specifically,
the results suggest that 60,000 low-education adults left or avoided the sample area
after the Crisis, roughly 13% of the area’s pre-Crisis low-ed population. Low rates of
home-ownership in low-income neighborhoods further suggest that these individuals
did not benefit much from the house price windfall before leaving, making it unlikely
that they saw a large share of the aggregate benefits. In addition, the large sorting
response confirms that house prices responded to a demand shock caused by a real
amenity change and not a contemporaneous change in market dynamics, such as an
expansion of credit to sub-prime borrowers.

Together, the results suggest that reducing air pollution is a very cost-effective way
to improve welfare but that policies may also face a steep trade-off between efficiency
and equity. More generally, the failure of standard methods raises the possibility that
current estimates of pollution’s effects on other outcomes like health and mortality are
also significantly too small.

Before presenting the results in detail, I discuss the puzzle of clean air’s seemingly
low value, what is behind the puzzle, and how to solve it (Section 2). I then provide the
theoretical framework I use to draw conclusions about MWTP, how pollutant visibility
affects agents’ behavior, and how people sort geographically in response to changes
in pollution (Section 3). Next, I discuss my research design based on the Electricity
Crisis and outline my estimation strategy (Section 4). Finally, I describe the data I use
(Section 5), present the results (Section 6), and discuss the possible welfare implications
(Section 7).

2 Finding the Value of Clean Air

House prices have long been used to measure the marginal willingness to pay (MWTP)
for non-market goods. By varying a single characteristic of a house and observing the
associated price change, we can infer the MWTP for that characteristic (see Section 3.1).
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The MWTP for pollution abatement has been measured this way many times, starting
with Ridker and Henning (1967).

But past work suggests that house prices do not respond much to pollution, implying
a disparity between the MWTP for pollution reductions and the expected health benefits
(Smith and Huang 1995). For a family of two adults and one child, 1 microgram of
particulate matter (PM2.5) per cubic meter of air (µg/m3) costs about $1,600 in increased
mortality risk alone, to say nothing of acute illness risk, decreased quality of life, or
the costs borne by other family members.3 However, in their meta-analysis of OLS
estimates of MWTP, Smith and Huang (1995) find that the interquartile range of
estimated MWTP is $0 to $233 per µg/m3 TSP and that the mean estimate only covers
6–33% of VSL-based mortality cost.4

More recent instrumental variables estimates have not narrowed this disparity. Chay
and Greenstone (2005) use the implementation of the National Ambient Air Quality
Standards (NAAQS), county-level house prices, and average county pollution monitor
readings to estimate a MWTP of $191 for a 1 µg/m3 reduction in TSP, well within
Smith and Huang’s interquartile range. Bayer, Keohane, and Timmins (2009) also use
county-level data and use pollution from distant sources as an instrument for local
pollution to estimate a MWTP of $131 per µg/m3 reduction of PM10.5

This disparity appears to be peculiar to air pollution, as prices readily respond to
other location-specific amenities. Cellini, Ferreira, and Rothstein (2010) use house price
responses to bond override elections and estimate the average household is willing to
spend $1.50 for a $1 increase in school capital expenditures. Linden and Rockoff (2008)
find that when a registered sex offender moves into a neighborhood, the value of nearby

3. The mortality value for an adult is $680 and based on the value of a statistical life (VSL) for
adults aged 35–44 from Aldy and Viscusi (2008) and adult PM2.5 mortality risk from Pope et al. (2002).
For a child, the value is $250 using infant PM2.5 risk from Woodruff, Parker, and Schoendorf (2006)
and the VSL of a 18–24-year-old, the lowest age estimated by Aldy and Viscusi. All monetary values
in the paper are denominated in 2014 dollars unless otherwise noted.

4. There are several measures of the class of pollutants called “particulate matter,” which are
larger solid and liquid particles rather than gaseous molecules. PM2.5 is all such particles with a
diameter no larger than 2.5 micrometers (µm), while PM10 particles have a diameter between 2.5 and
10µm. Total suspended particulates, or TSP, is a another measure that corresponds to all particles
smaller than 25–40µm, depending on the apparatus collecting samples. Because of the inconsistent
apparatus-dependent definition of TSP, the EPA abandoned it as an official measure in 1987 (52 FR
24634).

5. The estimate from Chay and Greenstone (2005) is based on their preferred specification in Table
5A, column 4. The estimate from Bayer, Keohane, and Timmins (2009) is taken from Table 6, column
2. This estimate assumes costless migration, which is standard in the literature. They also fit a
structural model that allows for costly migration, which yields a MWTP estimate of $352.
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houses drops by about $7,000, more than the FBI’s estimates of victimization costs
would suggest. Davis (2004) looks at how prices respond to the appearance of a cancer
cluster in Churchill County, Nevada, where the rate of pediatric leukemia suddenly
skyrocketed for unknown reasons. The price response there implies the welfare cost of
pediatric leukemia is about $7 million, in line with estimates of the value of a statistical
life from Aldy and Viscusi (2008).

The disparity is also not caused by a general ignorance of pollution’s health costs or
an unwillingness to avoid pollution. For example, it could be that people simply do
not know that pollution is dangerous, or that, like junk food, the cost of a marginal
dose is not salient enough to elicit a behavioral response. However, Neidell (2009) and
Moretti and Neidell (2011) find the opposite. They find that attendance at outdoor
attractions like the zoo and sporting events drops precipitously in response to smog
alerts, suggesting that people not only know the health risks but are willing to undertake
costly avoidance behavior.

This body of conflicting evidence suggests that something specific to air pollution is
attenuating house price responses or estimates of those responses.

2.1 Econometric Problems Behind the Puzzle

A likely candidate for attenuation bias is misspecification in who is exposed to pollution
(or pollution clean-up) and who is not. This is because, unlike wages or education, there
are no data on individual-level pollution exposure, so researchers must approximate
exposure in some way. In the economics literature, two approaches are predominantly
used.6 The first and most straightforward approach is to use a geographic difference-in-
differences design where people close to a pollution source are assumed to be exposed
to the source while those slightly farther away are assumed not to be exposed. The
second approach is to use data from the EPA’s network of pollution monitors as a proxy
for person-, neighborhood-, or county-level exposure, usually by interpolating between
monitors.

Unfortunately, both of these methods suffer from the same problem: They are unable
to capture sharp changes in pollution exposure across short distances, which biases
estimates based on these methods. It is also important to note that these problems are
inherent to pollution exposure generally and thus extend to estimates of pollution’s

6. Currie et al. (2014) summarize the methods used in the literature on pollution’s effect on children’s
health.
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effect on any outcome.

2.1.1 Bias in Geographic Diff-in-diff Estimates

In a geographic difference-in-differences design, people around a pollution source are
assigned to treatment and control groups based on their proximity to the source. The
econometrician chooses radius r0 around the source to define the treatment group and
radius r1 > r0 to define the control. Having defined treatment and control groups,
the problem is now a standard diff-in-diff around some shock to the source’s pollution
emissions. This allows the reduced-form effect of the pollution source to be estimated
when data on exposure is unavailable.7

When used to study air pollution, however, the geographic diff-in-diff is biased
because the wind does not respect the radii chosen by the econometrician and contami-
nates both the treatment group and the control group. Suppose the true effect of a
polluting firm on outcome yit is

yit = αNit + βXit + εit (1)

where Xit is pollution exposure to i at time t, Nit is exposure to other disamenities
created by the firm (e.g., eyesore of a refinery), and t ∈ {0, 1} indexes the pre- and
post-shock time periods, respectively. Exposure can be written Xit = mft ·h(rfi, θfi;Sf )
where mft is firm f ’s emissions and h is the probability density function that a molecule
of emissions ends up at distance r and heading θ relative to the firm. The vector Sf

contains variables about the physical characteristics of the firm’s polluting equipment
(e.g., height of the smoke stack) and local meteorological conditions like wind speed
and direction. Assume r0 is chosen so that rfi > r0 implies Nit = 0.

The geographic diff-in-diff estimates the reduced form as

yit = γ1 + γ2 · postt + γ3 · Ci + γGD · (Ci × postt) + µit (2)

where Ci = 1{rif ≤ r0} is a dummy variable for individuals living in the treatment
area. We can write the expected value of yit, conditional on i’s treatment assignment,

7. For examples of research focused on reduced-form geographic diff-in-diffs, see Currie and Walker
(2011) and Currie et al. (2015).
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in terms of the average effects on the treatment group:

Ei[yit | C] = αN̄C
t · C + βX̄C

t ·
[
C + ϕ(1− C)

]
(3)

where X̄C
t = Ei[Xit | C = 1] and ϕ = Ei[Xit | C = 0]/X̄C

t . Figure 1 depicts the
geographic diff-in-diff’s radii with the true downwind treatment marked by the shaded
region and the average effect for each area based on Equation (1). Note that as wind
speed increases, the shaded treatment area narrows and extends farther from the source,
increasing relative exposure downwind and thus increasing ϕ.

By construction, the geographic diff-in-diff recovers the following estimate of pollu-
tion’s effect on yit:

γ̂GD = E[yit | C = 1, post = 1]− E[yit | C = 1, post = 0]

−
(
E[yit | C = 0, post = 1] − E[yit | C = 0, post = 0]

)
Using Equation (3), this reduces to

γ̂GD = α
(
N̄C

1 − N̄C
0

)
︸ ︷︷ ︸
Non-pollution Effect

+ (1− ϕ)︸ ︷︷ ︸
Wind bias

· β
(
X̄C

1 − X̄C
0

)
︸ ︷︷ ︸
Pollution Effect

(4)

The first term captures the firm’s non-pollution effects. As β is the coefficient of interest,
the ideal research design would hold Nit constant over time, making this term 0.8 The
second term is the change in average exposure to the treatment group, multiplied by
the contamination factor (1− ϕ).

Thus, even when non-pollution effects are held constant over time, the estimate of
the pollution effects is biased because the control group is actually treated as well. And
because ϕ increases with wind speed, the contamination factor (1− ϕ) and γ̂GD both
become more negative as wind speed increases. Furthermore, because the distribution
function h need not be monotonic in r, ϕ need not be less than 1, meaning γ̂GD could
have the wrong sign.9 This contamination problem is common in program evaluation
(e.g., Miguel and Kremer 2004) and can be fixed by re-scaling by average treatment

8. This is naturally not the case when the shock to the firm is the construction of the firm itself (as
in Banzhaf and Walsh 2008, Davis 2011, and Currie et al. 2015). In such cases, N̄C

1 > N̄C
0 = 0. Note

also that as the wind gets stronger and ϕ→ 1, γ̂GD → αN̄C
1 and the geographic diff-in-diff recovers

the non-pollution effects of the firm, including sorting effects for outcomes not directly impacted by
non-toxic disamenities.

9. An example of the non-monotonicity of exposure with distance is given by Figure 2b.
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intensity. But this requires a good measure of treatment intensity, and, as Section 2.1.2
argues, this is a role monitor data are not well suited to play.

Empirically, the dependence of the bias on wind speed is important for two other
reasons. First, greater Los Angeles is one of the least windy areas in the United States,
so if the wind significantly biases estimates in this sample, it almost certainly biases
estimates in other regions with greater wind speeds. Second, when pollution is less
influenced by the wind, standard non–wind-based estimates should be less biased. For
example, when pollution is emitted at ground level, more of it stays close to the source,
keeping ϕ low. This suggests that the bias in geographic diff-in-diffs around pollution
from vehicles on the ground (e.g., Currie and Walker 2011) may not be as severe.
However, even car exhaust gets carried by the wind (Hu et al. 2009), and a low ϕ does
not mitigate the separate bias introduced by monitor data.

2.1.2 Bias from Pollution Monitor Interpolation

The most common way monitor data are adapted for use in economics is interpolation,
which uses data from pollution monitors to approximate pollution exposure at other
locations of interest.10 To study the effects of pollution exposure on some outcome, we
need data on the outcome and pollution exposure, {(yi, xi)}N

i=1, but xi is never observed.
However, we do observe {xm}M

m=1, pollution exposure at monitor locations. If values of
x are spatially correlated, so Cov(xi, xj) is high if i and j are physically close to one
another, then {xm} can be used to construct an approximation x̃i for any needed xi.

The viability of any interpolation method depends critically on the spatial covariance
of x. In the most extreme case where Cov(xj, xk) = 0 for all j 6= k, the interpolated
values will obviously be no better than random noise because the monitor data {xm}
do not provide any information about xi. Similarly, if Cov(xj, xk) falls quickly as the
distance between j and k grows, then more monitors will be needed at a higher spatial
frequency to cover the sample area. For example, if Cov(xj, xk) ≈ 0 if j and k are more
than 1 km apart, but all monitors are 5 km apart, then the interpolated x̃i will be no
better than noise for large portions of the sample area. The converse also holds and

10. It is also possible to use monitor data by restricting the data sample to people living close to
a single monitor. The shortcomings of this method are entirely practical, since reducing the sample
radius reduces the measurement error but also reduces the sample itself. This method works well in
case studies, like Graff Zivin and Neidell’s (2012) analysis of how worker productivity at a single firm
covaries with readings from a nearby PM2.5 monitor. However, the trade off between sample size and
measurement error limits its large-scale use.
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helps explain why rainfall data, which is highly correlated across tens of kilometers, has
been successfully interpolated in many different contexts.11

Unfortunately, air pollution exhibits a much lower degree of correlation across
space because of the discrete nature of pollution sources. Unlike rainfall and other
continental-scale geologic processes, air pollution is predominantly created by many
distinct sources like firms and cars. This makes the local geographic distribution of
pollution exposure very idiosyncratic, with sharp changes over very short distances; e.g.,
pollution levels downwind of a highway are dramatically different from pollution levels
upwind. This in turn means that the relationship between any given xi and a monitor
reading xm depend on many more factors than distance and relative direction. Most
importantly, Cov(xi, xm) depends on whether a major pollution source exists between i
and m. If m is downwind of the source, xm varies with the source’s emissions but xi

does not, and vice versa.
Evidence confirming this problem can be found in existing literature, even though the

problem itself has not been directly raised or addressed. Studies using interpolated values
often present a leave-one-out cross-validation as evidence of the interpolation’s quality.12

The value of each monitor reading xm is interpolated using all remaining monitors and
the correlation between xm and x̃m is calculated, with a high correlation coefficient
assumed to be evidence of a good interpolation. However, the correlation of xm and x̃m

presented in these studies is generally unconditional, which conflates spatial correlation
with secular temporal correlation which may equally effect all monitors (e.g., seasonal
trends in ozone). Karlsson, Schmitt, and Ziebarth (2015) use German pollution monitors
and inverse distance weighting (IDW) to calculate this cross-validation correlation for
several pollutants in Germany. The unconditional correlations range from 0.5 to 0.93;
however, conditional on year and season effects, the correlations drop precipitously,
ranging from 0.15 to 0.47.13 Likewise, Knittel, Miller, and Sanders (2014) and Lleras-
Muney (2010) present evidence of non-classical measurement error in IDW and Kriging
interpolations, respectively. In this context, the non-classical measurement error will
exacerbate the usual attenuation in OLS estimates from classical and potentially cause
wrongly signed estimates.14

11. See Pouliot (2015) for a summary of rainfall interpolations.
12. Inverse distance weighting, as well as this cross-validation technique, has been the standard

method for with sub-county pollution analyses in the economics literature since Neidell (2004) and
Currie and Neidell (2005).
13. See Table F1 of Karlsson, Schmitt, and Ziebarth (2015).
14. This is because the distribution of x̃ is smoother than that of x, so Var(x̃) < Var(x). Noting that
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And unlike classical measurement error, quasi-experimental research designs and
other IV methods will not necessarily redeem a bad interpolation. Given an instrument
z and interpolation error η = x̃− x, estimates will only be consistent if z and η must
be uncorrelated. This simply follows from the canonical probability limit of the IV
estimator:

plim β̂IV = β · Cov(x, z)
Cov(x, z) + Cov(η, z) (5)

Note that in this case that β̂IV could be bigger or smaller than β depending on the
joint distribution of (x, z, η) which will vary across research designs. Nevertheless, β̂IV

can only be consistent when Cov(η, z) = 0, which is unlikely to be the case in the most
commonly used research designs.

In the case of the geographic diff-in-diff, this condition is very unlikely to hold
because firms outnumber monitors by several orders of magnitude. According to the
EPA’s AirData summary files, the average county had 1.01 monitors in 2005, with
almost two-thirds of counties having zero monitors. Despite being in one of the most
intensively studied areas in the United States, each monitor in greater Los Angeles is
outnumbered by hundreds of firms. This disparity is readily apparent in Figure A2,
which maps the locations of every polluting firm and pollution monitor in the area.
With so few monitors, the distribution of x̃ will be smooth across the sample area
of most firms; that is, x̃ will not spike downwind of the firm. But actual exposure x
does spike, particularly close to the firm, so η will also spike near the firm and will
be correlated with proximity to the firm. And since the instrument z is defined by
proximity to the firm, Cov(η, z) 6= 0.

In the case of county-level studies using the Clean Air Act (CAA) as a natural
experiment, estimates are also likely to be inconsistent because z is mechanically related
to x̃. The CAA is often used as a natural experiment because it instituted more stringent
regulations on counties whose average monitor reading exceeded a certain threshold.
In these county-level studies, the measure of pollution exposure to the county, x̃, is
generally the very same monitor average that affects a county’s treatment status. The
econometric problem this causes is easier to see by noting that Equation (5) can also
be written as

plim β̂IV = β · Cov(x, z)
Cov(x̃, z) (5′)

Thus, if the treatment impacts monitor readings x̃ more than actual exposure x,

x̃ = x+ η, where η is the interpolation/measurement error, it immediately follows that Cov(x, η) < 0.
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plim β̂IV < β and the estimate will understate the true effect. This would be the case if,
as Bento, Freedman, and Lang (2015) find, regulators put more effort into reducing
pollution levels at problematic monitors within the county.15

2.2 Solving the Puzzle with Atmospheric Dispersion Model-
ing

The econometric problems described above are rooted in the idiosyncratic nature of
pollution exposure across space. Any measure of pollution must capture sudden changes
in exposure over short distances in order to be useful in statistical analyses. Atmospheric
dispersion models use detailed data on meteorology and firms to accomplish exactly
this goal.

A dispersion model uses data on a firm’s polluting equipment and the meteorology
around the firm (the vector Sf from Section 2.1.1) and predicts the spatial distribution of
the firm’s pollution (the function h from Section 2.1.1). In this paper, I use AERMOD,
the EPA’s legally preferred model for short-range applications. This preference is
based on the model’s high accuracy as established by peer-reviewed field tests (e.g.,
Perry et al. 2005).16 To account for meteorological conditions, AERMOD requires
hourly data on temperature, wind speed, and wind direction at multiple elevations; the
standard deviation of vertical wind speed; the convectively and mechanically driven
mixing heights; and other parameters.17 AERMOD also requires five parameters for
the pollution source itself: the smoke stack’s height and diameter, the temperature and
velocity of the gas exiting the stack, and how much pollution is emitted by the stack.

Using these data, AERMOD yields aermodift = NOxft · h̃(rfi, θfi;Sf ), the pollution
exposure to location i at time t due to NOx emissions from firm f , measured in
micrograms per cubic meter of air (µg/m3). Summing over all firms yields total
industrial exposure: aermodit = ∑

f aermodift. It is important to note that these

15. There is a more general problem with using the average of a county’s monitors: The relationship
between x̃ and the true distribution of individual-level exposure is unclear and changes over time
because monitors are a sample across space, not population. Even if it could be credibly established that
x̃ is an unbiased approximation of the mean (or any order statistic) of the true exposure distribution
at some point in time, this relationship would quickly be broken as people and firms change their
behavior and locations over time.
16. Regulatory preference is stated in 40 CFR pt. 51, app. W (2004). See Cimorelli et al. (2005)

for a rigorous development of the model itself. Field tests are generally conducted by placing several
dozen monitors around a polluter and adding to its emissions a non-toxic, non-reactive tracer chemical
which is not usually present in the area.
17. A full list of the variables used is found in the AERMOD user manual or Cimorelli et al. (2005).
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AERMOD-based measures do not represent NOx exposure alone. AERMOD uses data
on how much NOx a firm emits, but NOx will react in the atmosphere to become ozone,
thus aermodift is a composite measure of NOx and ozone exposure. Section 4.2 below
describes how this fact can be used to test how buyers respond differentially to NOx,
which is visible, and ozone, which is not.

Mapping aermodift (Figure 2) and aermodit (Figure 3) makes clear the problems
caused by geographic diff-in-diffs and monitor interpolation, respectively. Figure 2 maps
aermodift for a single firm, the Scatterwood Generating Station. The concentration
of NOx-based pollution is plotted for all 100-meter grid squares. For Figure 2a, this
is limited to area less than 20 kilometers of the firm. Figure 3a maps aermodit,
total exposure to industrial emissions, across the entire sample area, with monitor
locations marked by white dots.18 Figure 3b shows how exposure would be calculated
by interpolating aermodit from actual monitor locations.

Figure 2 shows that the direction and speed of the wind is crucial in knowing who
is affected by the firm. It also shows how extensive the contamination of a geographic
diff-in-diff can be. In particular, Figure 2b offers a closer look at the exposure around
the firm, with circles drawn at one and two miles from the firm for easy comparison
to a geographic diff-in-diff’s treatment and control groups. Much of the control group
sees extreme levels of exposure while the area of lowest exposure in the geo diff-in-diff
sample is actually in the treatment group.19

Figure 3 shows that there is far too much spatial variation in exposure to be
captured by so few monitors. Figure 3a shows how quickly exposure can change over
short distances and how unpredictable the exposure distribution can be. The number of
local extrema and inflection points far exceeds the number of nearby monitors. Figure 3b
makes this problem easier to see by showing the interpolated values of aermodit based on
the actual monitor locations. The interpolation follows the literature and is calculated
using inverse distance weighting (IDW) with monitors restricted to those with full NOx

coverage over the sample period (1997–2005). Monitors are also given a weight of zero
if they are more than 15 km from the point of interest.

Little of the variation seen in Figure 3a remains after interpolation. Most locations’
predicted exposure are perfectly correlated with the nearest monitor, and the area that

18. Section 4.3 discusses how this sample region is defined. Details about how AERMOD is imple-
mented in this paper are given in Section 5.5.
19. This non-monotonicity is caused by the height of the firm’s smoke stacks (about 300 feet) and

the buoyancy of the hot gases they emit. The bulk of the smoke plume travels laterally in the air
before touching down.
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does have some variation at best vaguely resembles the true distribution. Note that
if the 15-km interpolation radius were expanded, this would add no true variation to
the data because the sample of monitors would be the same. This would be especially
troublesome for the southwestern corner of the region, the Palos Verdes Peninsula,
which has very low exposure because it is upwind of all major polluters. Despite being
one of the cleanest areas in the sample, it would be assigned a very high-level exposure
and be indistinguishable from the truly polluted area near the monitor.

The complex patterns seen in the wind-based exposure distribution is obviously
difficult to approximate using concentric circles or other simple methods. The possibility
that factors like the wind might affect estimates has been raised occasionally in the
literature, but the results have not suggested it is an important issue. Of the economics
papers on industrial pollution that have tried to account for the wind, only Hanna
and Oliva (2015) find that the wind significantly alters their estimates, and then only
in certain specifications.20 The mixed nature of these past results is likely due to the
complexity of the atmospheric dispersion problem, which has been the dedicated focus
of many atmospheric scientists for decades (see Cimorelli et al. 2005, Section 1 for a
summary). Fortunately, the econometric problems described above can be avoided by
taking advantage of their work.

3 Theory and Predictions

This section presents a simple model of locational choice and describes how it can be
used to answer the economic questions of interest: what are people willing to pay for
clean air; does the market fully capitalize the costs of invisible pollution; and what is
the incidence of an air quality improvement.

20. Hanna and Oliva (2015) look at how labor supply in Mexico City responded to a drop in pollution
after the closure of a large refinery. They include the local elevation and a linear measure of degrees
downwind in some specifications. Davis (2011) estimates the effect of plant openings on nearby house
values and includes dummy variables for “upwind” and “downwind” in a robustness check. Schlenker
and Walker (Forthcoming) measure the change in daily hospital visits due to changes in airport traffic
and incorporate wind speed and direction into one of their models. Luechinger (2014) compares
county-level infant health before and after the mandated desulfurization of power plants in Germany.
He calls a county “downwind” of the power plant if it falls in the same 30-degree arc as the prevailing
wind direction and includes downwind dummies in all his specifications.

13



3.1 House Prices, Hedonics, and MWTP

When choosing a place to live, households weigh a location’s amenities and house prices
against their own income and preferences. They solve

max
c,g

u(c, g;α) s.t. y = c+ P (g) (6)

where c, the numeraire, is aggregate non-amenity consumption; g is a vector of public
and private amenities provided by the chosen neighborhood and house; P (g) is the
price of a house with amenities g; and (y,α) are income and a vector of preference
parameters, respectively, and together define the household. This differs from a standard
consumer problem because many elements of g, like air quality or proximity to the
ocean, are location specific, so households must physically relocate in order to change
their consumption of these amenities. This adds a spatial element to the standard
market clearing equilibrium conditions—every household must weakly prefer their
current location to all others.

Rosen (1974) noted that utility-maximizing agents will choose a bundle of amenities
and prices (P (g∗), g∗) so that their marginal willingness to pay for each gk ∈ g is equal
to the marginal price.21 To see why this is the case, note that for some fixed utility
level ū, the solution to Equation (6) can be re-written

u
(
y − θ(g∗; y,α, ū), g∗;α

)
= ū (7)

where θ is the agent’s willingness to pay for g, conditional on (y,α, ū). For a single
amenity gk, ∂θ/∂gk = θgk

is the marginal willingness to pay for gk, and Pgk
is the

marginal price for gk. If θgk
> Pgk

, then the agent can buy more gk for less than she
would otherwise be willing to pay, and vice versa if θgk

< Pgk
; thus in equilibrium,

θgk
= Pgk

for all gk at g∗.
Estimating the average MWTP, which is difficult to do directly, can therefore be

accomplished by estimating Pgk
instead, though this requires some assumptions. In

order to identify Pgk
using intertemporal variation in house prices, the shape of P , which

is endogenously determined in equilibrium, must be constant over the sample period
(Kuminoff and Pope 2014). While this assumption is less palatable for longer sample

21. There are a number of theoretical frameworks that can be used to estimate MWTP. See Palmquist
(2005) and Kuminoff, Smith, and Timmins (2013) for summaries of valuation using hedonic pricing
and equilibrium sorting models.
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periods and low-frequency data, it is likely to hold when using a short sample period
and quarterly data. Another potential problem is that (P (g∗), g∗) is endogenously
chosen by the agent, creating a potentially omitted variables problem (Bartik 1987;
Epple 1987; Chay and Greenstone 2005). Any attempt to identify Pgk

must address
this and satisfy the identification assumptions specific to the chosen research design,
which I discuss for this paper in Section 4.

3.2 Pollutant Visibility and Prices

Even if people care about pollution, they cannot bid more for houses with cleaner air if
they cannot discern clean air from dirty air.

In an efficient market, a house’s price should reflect the net present value of expected
future utility flows afforded by the house’s amenities. If amenities change—or people
believe they will change—it should be reflected immediately in the market price of the
house. Therefore, any transitory or already foreseen changes in pollution levels, like
predictable seasonal variation, should not affect a house’s price.

Conversely, if buyers suffer from imperfect information or salience effects, then prices
may depend on transitory changes in pollutant concentrations or salience. Determining
current pollution levels is difficult without equipment because many pollutants, like
ozone, are colorless and have no bad smell. Extrapolating pollution’s daily, weekly,
and yearly patterns after a single viewing is even more difficult. But even with perfect
information, people may not respond to pollution if it or its costs are not salient. There
is a growing body of evidence that salience and framing can significantly affect even
weighty decisions like choosing a house and a neighborhood.22

We can distinguish between these cases empirically by testing whether house prices
respond to foreseeable changes in the composition of air pollution. NOx is emitted
directly by polluters and becomes ozone at different but predictable rates throughout
the year. Thus, with perfect information and rational agents, house prices should
not respond to these seasonal changes. If the price response does vary seasonally, the
physical characteristics of NOx and ozone will allow us to identify whether toxicity or

22. Pope, Pope, and Sydnor (2014) show that house prices gravitate toward round numbers like
$150,000, suggesting that psychological biases play a large role in major purchases. Busse et al. (2015)
find people are more likely to buy a convertible car on a hot or cloud-free day, even if they have already
owned a convertible and should know how much utility they get from driving a convertible in the
snow. An earlier version of this paper, Busse et al. (2012), also provided evidence that houses with air
conditioners and swimming pools fetch higher prices during the summer.
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visibility affects buyers more (see Section 4.2).

3.3 Sorting, Home-ownership, and Incidence

Describing the incidence of a pollution reduction is difficult without detailed panel data
on households. Nevertheless, differential migration behavior and homeownership rates
across socioeconomic groups can shed some light on who benefits most from air quality
improvements.

In the canonical two-city spatial equilibrium model, population flows into a city
after an amenity improvement.23 However, with many cities and heterogeneous income,
low-income households may flow away from amenity improvements if high-income
households are willing to pay relatively more for the same amenity improvement.24

If emigrating households’ next best amenity and price bundle is unchanged, they are
likely worse off since they are moving to a location they had already turned down and
must also pay moving costs. However, if households cannot accurately assess air quality,
then they may not have been at their optimal residential choice to begin with, making
the welfare change for emigrants potentially ambiguous. Furthermore, emigrants may
also have been homeowners who benefited from the house price windfall caused by
the improvement and they are simply re-optimizing in response to their new budget
constraint.

Incumbent home owners in general will benefit from the sudden increase in house
prices, regardless of their income or preferences. In the classic Roback (1982) or Alonso–
Muth–Mills framework of spatial equilibrium, every household is marginal and prices
perfectly capture households’ valuation of the amenity, offsetting the utility gains and
making incumbent home owners the exclusive beneficiaries of the amenity improvement.
However, this is an extreme case, and heterogeneity in preferences and incomes will
almost certainly leave many inframarginal households with positive rents after the price
increase. But even with many inframarginal consumers, incumbent home owners will
capture a large portion of the welfare gains and it is easy to measure how these gains
are spread across the income distribution.

23. This is a classic result in local public finance going back to Tiebout (1956) and has been examined
many times. See Epple and Sieg (1999) for a general application and Kuminoff, Smith, and Timmins
(2013) for an overview of the equilibrium sorting literature. See Banzhaf and Walsh (2008) for a
two-city model applied to air pollution.
24. Higher willingness to pay among high-income households, conditional on preferences, follows

directly from the standard single crossing assumption on preferences for the numeraire and the amenity.
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4 Research Design

In this section, I describes how I use the California Electricity Crisis as a natural
experiment (Section 4.1) and how the Crisis shocked both NOx and ozone, which can
be used to identify the affect of pollutant visibility on prices (Section 4.2). Section 4.3
details the econometric models I estimate.

4.1 Electricity Crisis as Natural Experiment

Estimates of pollution’s effect on house prices may suffer from omitted variables
bias because households endogenously choose their bundle of amenities and many
characteristics about the location and the residents themselves are unobservable. To
identify the causal effect of pollution exposure on house prices, I use the natural
experiment created by the California Electricity Crisis of 2000, which unexpectedly and
permanently lowered NOx emissions through its effect on the RECLAIM cap-and-trade
program.

In 1994, the South Coast Air Quality Management District (SCAQMD), which
regulates air pollution in Los Angeles, Orange, San Bernardino, and Riverside Counties,
instituted a cap-and-trade program for NOx emissions called RECLAIM (see Fowlie,
Holland, and Mansur 2012). At that time, firms were given an initial allocation of
RECLAIM Trading Credits (RTCs) which were tied to a specific year. At the end of
each year, firms must surrender one current-year RTC for every pound of NOx emitted.
Excess RTCs can be sold to other firms but not banked for future years. To ease firms’
transition into the program, the total number of RTCs was set to be higher than total
emissions initially and decrease over time, eventually creating a binding cap.

However, the California Electricity Crisis caused the aggregate cap to bind suddenly,
which in turn caused firms to suddenly cut their emissions. Through 1999, most firms
had more than enough RTCs to cover their emissions, so there was little need to trade
or install abatement equipment. Because of the lack of demand, RTC prices were low,
and firms expected that they would be able to buy RTCs cheaply when their own
private cap became binding. In 2000, demand for electricity unexpectedly outstripped
potential supply, beginning the California Electricity Crisis.25 Electricity generators
ramped up production to prevent rolling black outs. However, generators subject to

25. The exact causes of the shortage and the Crisis in general are a source of much debate. See
Borenstein (2002) and Weare (2003), especially Section 3.
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RECLAIM needed RTCs to cover their increased emissions, which caused the aggregate
RTC cap to suddenly bind. RTC prices skyrocketed and non-electric firms cut their
emissions in response.

This dramatic change is shown in Figure 4, which plots total NOx emissions, available
RTCs for each year, and monthly RTC prices. With the onset of the Crisis, RTC
prices jumped from an average of $2,800 in 1999 to a peak of $62,000 at the end of
2000. The resulting drop in emissions is shown in Figure 5, which plots the average
of firm emissions by quarter and year, giving firms equal weight by re-scaling a firm’s
emissions by its own sample maximum. Electric generation firms ramped up emissions
somewhat in late 1999 and then in earnest in 2000. Non-electric firms responded by
cutting emissions dramatically from the third quarter of 2000 through 2001, with a
more modest decline afterwards.

In effect, the Crisis hastened firms’ long-run adaptation to a binding cap, causing a
sudden and permanent drop in emissions. In general, a firm can reduce its emissions by
either lowering production or altering the production process itself, usually by installing
equipment which removes NOx from its combustion exhaust before it reaches the outside
air. And while the Crisis was temporary, RECLAIM’s binding cap was not, meaning
firms had a strong incentive to make long-term adjustments. This is why the temporary
Crisis caused the permanent drop in pollution seen in Figures 4 and 5.

This sudden, permanent drop in emissions can be used to construct a set of instru-
ments for local residents’ exposure to firms’ pollution. When faced with high RTC
prices, firms with more emissions had a larger incentive to cut emissions, so the Crisis
should have had a larger effect on houses downwind of these firms. We can use a
house’s pre-Crisis exposure to gauge how the Crisis changed its exposure relative to
other houses. Using aermodit, the AERMOD-predicted exposure to house i in time t, I
define pre-Crisis exposure aermod_prei as the average exposure across all 8 quarters in
1995 and 1996. The interaction of aermod_prei and δy, a dummy variable for year y,
captures the differential effect of the Crisis on house i in year y. The full set of these
interactions aermod_prei × δy, which I will refer to as the “annual” set of instruments,
captures the differential effect of the Crisis on exposure across space and over time.

Similarly, a single interaction, postt = 1{y ≥ 2001}, can be used to form a single
instrument that I will refer to as the “post” instrument. This instrument, aermod_prei×
postt, is the equivalent of a difference-in-difference estimate with variable treatment
intensity. While it is coarser than the set of annual instruments, it allows us to
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summarize the reduced form and first stage effects of the Crisis conveniently with a
single number.

The critical identification assumption behind these instruments is that there are no
contemporaneous changes in house prices or non-industrial pollution exposure that are
correlated with the instruments, conditional on the other covariates. For example, the
housing bubble might have induced more appreciation in poorer neighborhoods which
also might have been more affected by the Crisis. Fortunately, we can explicitly control
for time trends in such risk variables and the build up of the bubble was not a discrete
event like the Crisis was. Another potential problem is that the instruments might be
correlated with changes NOx from cars. This would bias second-stage estimates upward
if industrial exposure were correlated with car exposure and the Crisis also caused a
sudden and permanent drop in car usage in the area. The former condition is unlikely
given the large area that firms affect, while highways rarely have a significant impact
beyond 500 meters (Karner, Eisinger, and Niemeier 2010; Anderson 2015). Furthermore,
traffic data show that no significant change in driving patterns coincided with the
Crisis.26

4.2 Using the Chemistry of NOx and Ozone

Several characteristics of NOx and ozone make them ideal for identifying how much
buyers depend on the visibility of pollutants in their decision making.

First, NOx and ozone serve as good counterfactual chemicals for one another. They
are both lung irritants, but NOx has a reddish-brown color and noxious smell, while
ozone is invisible, has no bad odor, and is far more toxic than NOx.27 Thus, if people
respond more to NOx, it is likely because of its greater visibility, while if people respond
more to ozone, it is likely because of its greater toxicity.

Second, ozone is the product of NOx-dependent atmospheric reactions, so the
Electricity Crisis exogenously shocked people’s exposure to both pollutants. NOx,
a catchall term for NO and NO2, is emitted directly by combustion processes while
ozone is created from NOx-dependent chemical reactions. These chemical reactions also

26. Unreported regressions show traffic patterns had no significant break from trend through the
period of the Crisis. I use data from the California Department of Transportation’s Freeway Performance
Management System (PeMS) for the Bay Area (region 11), 1999–2005. The Bay Area is used because
data for Los Angeles only go back to 2001.
27. NOx and ozone are oxidizing agents, which react with and destroy cells in the lining of the lung,

making it more difficult for the lungs to clear foreign particles and bacteria (Chitano et al. 1995).
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depend on UV radiation from the sun, which varies predictably throughout the year.28

Third, the predictable variation in UV radiation across seasons results in different
but predictable rates of NOx-to-ozone conversion throughout the year. Table 1 shows
these trends using data from pollution monitors on NOx, ozone, and the coefficient
of haze. Columns 1–3 show unconditional means and columns 4–6 show coefficients
from regressions of the given pollution metric on dummy variables for each quarter,
controlling for monitor-year fixed effects. Standard errors are clustered by monitor.
To make comparisons easier, each variable has been standardized to have a mean of
0 and a standard deviation of 1. The patterns in both sets of statistics are the same,
regardless of controls: NOx peaks in Q4 and bottoms out in Q2, with ozone following
the opposite pattern.

Because the seasonal variation in NOx-to-ozone conversion is predictable, it can be
used to test whether or not people respond to transitory changes in pollution levels as
discussed in Section 3.2. This can be done by allowing the effect of aermodit to differ
across seasons of the year. Recall that AERMOD uses data on firms’ NOx emissions
and is agnostic about how those original emissions change in the atmosphere before
arriving at their final destination. This makes aermodit a measure of both NOx and
ozone, depending on the season. In Q2 aermodit will be primarily ozone, while in Q4 it
will be primarily NOx. A larger effect in Q4 would suggest that people respond more
to the visible NOx, while equal coefficients in all quarters would suggest that agents are
not affected by salience and may have perfect information.

4.3 Estimation Strategy

To measure how prices respond to pollution exposure, I estimate the following equation:

ln pit = β · aermodit + αi + δt +
∑

k

γ1k · wik · t+
∑

k

γ2k · wik · t2 + εit (8)

28. The relationship of NOx and ozone can be summarized as two chemical processes:

hv + NO2 + O2 → NO + O3

NO + O3 → NO2 + O2

In the first process, an ultraviolet photon (hv), an NO2 molecule, and free oxygen (O2) react to form
ozone (O3) and NO. In equilibrium, ozone and NO readily react with each other to reverse this process,
leaving no net ozone. Disturbances to this equilibrium, like increasing UV radiation or adding volatile
organic compounds (VOCs) that convert NO to NO2, result in increased ozone levels. See Sillman
(1999) for a more detailed discussion of NOx-ozone reactions.
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where pit is the price of house i in quarter t; aermodit is exposure to industrial NOx-
based pollution; αi are house fixed effects; δt are time (quarter-year) effects; (γ1k, γ2k)
are coefficients of quadratic time trends for local geographies, defined by a 10-km grid,
and local economic conditions that might affect house prices (discussed below); and εit

is the usual residual term.
These controls account for a number of factors that may confound estimates of β,

such as amenities not included in the available data and differential trends across local
housing markets. The house fixed effects, αi, capture of all time-invariant characteristics
about the house like square footage, number of bedrooms, proximity to the beach, etc.
The time effects, δt, account for general trends in the housing market over time, as well
as seasonal trends within each year (e.g., if houses consistently sell for more during the
summer). The local geographic trends allow different parts of the metropolitan area to
have different secular trends.29

The local trends by economic variables are specifically targeted at concerns related to
the housing bubble, which differentially impacted neighborhoods with poor credit. Mian
and Sufi (2009) find that zip codes with lower incomes and credit scores were affected
more by the expansion of sub-prime credit. If these areas also experienced relatively
bigger air quality improvements thanks to the Crisis, the coefficient on aermodit could
pick up any increase in house prices due to the expansion of sub-prime credit. To
prevent this, I interact the following variables with quadratic time trends: the average
loan-to-value ratio for houses sold in the house’s census tract in 2000; the average
predicted interest rate for mortgages taken out in the house’s census tract in 2000; and
the median household income in the house’s census block group in 2000. The first two
variables are averages at the tract level, rather than block group, because they are
based on transacted properties in that year, making the smaller block group sample too
noisy. The predicted mortgage interest rate data was calculated by DataQuick using
proprietary methods and is included in the house data described in Section 5.1.

I restrict the analysis to the 11-year period centered on the Crisis: 1995–2005.
RECLAIM and the data collection it required was rolled out across firms during 1994,

29. Given the large size of the sample region, the ideal geographic unit for these trends would be
individual cities, which have economically meaningful boundaries (unlike zip codes) and are generally
small but not so small as to be computationally burdensome (unlike tracts and zip codes). Unfortunately,
many houses do not have a city listed in the data, and the cities of Los Angeles and Long Beach cover
a large portion of the sample region while also having a great deal of within-city heterogeneity. To
overcome these issues, I use a 10-km grid, shown in Figure A1, which is aligned to preserve as many
city boundaries as possible. This grid results in 17 different areas that each get their own quadratic
time trend.
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so the first full year of reliable emissions data is 1995. I follow Fowlie, Holland, and
Mansur (2012) and set the last year of my analysis to 2005. This avoids the peak
and subsequent collapse of the housing bubble. However, because I use the first two
years of data in constructing my instruments, the actual regression sample is limited to
1997–2005.

I restrict the region of analysis to the southwest region of SCAQMD territory,
roughly between Santa Monica and Huntington Beach (see Figure 3a), to minimize
measurement error due to geography. All of the major polluters are located in this
region and houses farther away from the pollution sources are likely to have less actual
exposure from the firms and more noise in the modeling prediction, decreasing the
signal-to-noise ratio of the pollution measure. Predicting the pollution distribution
is also more complicated farther inland because of the San Gabriel and Santa Ana
Mountains, which can act like a dam, collecting pollution blown from the coasts. To
avoid these problems, I restrict my sample to houses within 10 kilometers of a major
electric firm in Los Angeles or Orange County.30

Because of the previously discussed concern about omitted variables, I estimate
Equation (8) using two-stage least squares (2SLS) and limited-information maxi-
mum likelihood (LIML). As discussed in Section 4.1, the main set of instruments
is {aermod_prei × δy}2005

y=1998, which I refer to as the “annual” instruments and which
have the following first stage:

aermodit =
2005∑

y=1998

(
aermod_prei × δy

)
· πy

+ νi + νt +
∑

k

η1k · wik · t+
∑

k

η2k · wik · t2 + µit (9)

The estimates of πy can be plotted to verify the common trends assumption that the
instruments only affect aermodit and ln pit through the Crisis. I also use an alternative
“post” instrument, aermod_prei × postt where postt = 1{t ≥ 2001}, instead, which
treats the Crisis as a difference-in-differences with variable treatment intensity. This
provides a convenient summary of the average effect of the Crisis on exposure and
prices.

To test for pollutant visibility effects, I allow the effect of aermodit in Equation (8)

30. I also include in this group the southwestern most firm in the area in order to include the Palos
Verdes Peninsula in the regression sample (see Figure A1).
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to vary by quarter of year, as discussed in Section 4.2:

ln pit =
∑

q

βq · (aermodit ×Qq) + αi + δt +
∑

k

γ1k · wik · t+
∑

k

γ2k · wik · t2 + εit (10)

where Qq is an indicator equal to 1 if t is the q-th quarter of the year.
For neighborhood sorting, I use census block groups to represent neighborhoods and

adapt Equation (8) for use with the block group data:

ynt = aermodnt + δn + postt +
∑

g

δg × postt +
∑

k

γk · wk,2000 × postt + εnt (11)

where n indexes block groups and y is one of many possible block group–level charac-
teristics (e.g., log median household income). The block group data are taken from the
2000 Census and the ACS 5-year average for 2005–2009. Because there are only two
years of data, the only possible time trends are a single dummy variable for “post.” The
10-km grid used for localized trends is the same as described above for houses. The
controls for year 2000 demographics are designed to account for possible regression to
the mean in the outcomes of interest: population, number of households, log median
household income, population per square mile, population over age 25, fraction with no
high school diploma, fraction with high school but not college degree, fraction white
(non-Hispanic), fraction Hispanic, fraction black. These variables are discussed further
in Section 5.2.

5 Data

5.1 Houses

Data on home sales and housing characteristics come from county registrar and assessors’
offices and were collected by DataQuick, Inc. The data include any property that has
been assessed and most sales, refinances, and foreclosures in California after 1990. Data
for each property includes square footage, lot size, number of bedrooms and bathrooms,
and the year the property was built. Each sale or refinance includes the value of the
mortgage and any additional loans taken against the property, as well as interest rates
as estimated by DataQuick using proprietary methods. Latitude and longitude are also
included for each property.

I drop sales that fall outside normal market transactions and which may not
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accurately reflect the market’s valuation of the house. Specifically, all transactions must
be arms-length, non-distressed sales (i.e., no foreclosure sales or short sales) with a price
of at least $10,000. I also drop a sale if the property transacted within the previous
90 days, as many of these transactions are duplicates. The sample is also restricted to
homes built before 1995 to preclude direct sales from developers to consumers. The top
0.1% of sales are winsorized.

Table 2 shows average sale price, house hedonics, and quarter of sale broken down
by the number of times a house transacted during the sample period. House prices
are deflated to real 2014 dollars using the all-items CPI. Houses are are not used in
summary statistics or regressions if they fall outside the sample region described in
Section 4.3.

5.2 Census Block Groups

Data on Census block group demographics are taken from the 2000 Census and 2005–
2009 5-year American Community Survey (ACS) sample. For each block group, these
data include total population; white (non-Hispanic) population; Hispanic population;
black population; the number of households; median of household income; median rent;
and educational attainment for individuals age 25 and older. The data also include the
block groups’ total land area, which I use to calculate population density (population
per square mile). I group educational attainment into three categories: people who
did not graduate high school; people who graduated high school but do not have a
bachelor’s degree; and people who hold at least a bachelor’s degree. To reduce noise,
I drop block groups that have less than 400 people in 2000, which is roughly the 4th
percentile of all block groups and constitutes less than 0.5% of all people in the sample.
Table 3 presents summary statistics for both 2000 and 2005–2009.

5.3 Firms

There are several components to the firm-level data, which cover firm emissions over
time, the firm’s name and location, and physical characteristics of the firm’s polluting
equipment. The firm data also include information about RECLAIM Trading Credit
(RTC) allocations and subsequent trades.

Most of the data come from SCAQMD via public records requests (SCAQMD 2015a).
These data include each firm’s name, address, SCAQMD-assigned ID number, the mass
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of NOx the firm emitted every quarter from 1994 to 2014, and all relevant RTC data,
including initial allocation of RTCs, the quantity, price, and vintage of exchanged RTCs,
and the ID numbers of participating firms. Firms’ operating addresses were geocoded
to get latitude and longitude to represent the location of the firm’s smoke stacks, which
are required by AERMOD and other location-based calculations (see Appendix A.1 for
more details).

AERMOD requires data on the physical characteristics of firms’ polluting equipment
(smoke stack height and diameter, and temperature and velocity of gas exiting the
smoke stack), which I take from the National Emissions Inventory (NEI). Regulators
often collect these data specifically to run atmospheric dispersion models like AERMOD,
but the data collected by SCAQMD could not be made available (SCAQMD 2015b).
However, the National Emissions Inventory (NEI) has these data for many firms along
with each firm’s name, address, SIC, and the type of combustion process behind each
stack. I matched most firms to the NEI by reconstructing the NEI-specific ID number
from the SCAQMD ID number and other administrative variables, and I validated these
matches using fuzzy string matching on firm names and addresses. Any remaining firms
were matched via fuzzy string matching and manually checked. For firms with missing
stack data, I impute values using the firm’s SIC and the stack’s equipment-type code
(SCC). Details of the imputation process and the construction of the firm-level data in
general are outlined in Appendix A.

Table 4 gives summary statistics by industry (4-digit SIC) on emissions, smoke stack
parameters, electric-generator status, average distance to the nearest meteorological
station, and the number of firms in each industry group.

5.4 Meteorology and Pollution Monitor Data

Data on local meteorological conditions come from SCAQMD. Before building new
polluting equipment, firms must submit an impact report to SCAQMD using AERMOD
to show how the new equipment will impact ambient pollution levels. To facilitate
the making of these reports, SCAQMD makes AERMOD-ready meteorological data
available on its website.31

These data were gathered by 27 meteorological stations throughout SCAQMD.32

31. The data are most easily accessible via the SCAQMD webiste: http://www.aqmd.gov/home/
library/air-quality-data-studies/meteorological-data/data-for-aermod
32. The location of these stations is mapped in Figure A2.
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The data consist of hourly observations for temperature, mean and standard deviations
of wind speed and direction at multiple altitudes, and other variables described in
Section 2.2. Each station provides at least three years of data between 2006 and 2012.
While these stations were not in operation at the time of the Crisis, wind patterns at
the given locations are very stable over time.

Data from air pollution monitoring stations comes from the California Air Resources
Board (CARB). They include hourly measures of ozone, NOx, and the coefficient of
haze (COH), which is a measure of visibility interference in the atmosphere. I aggregate
the hourly measures to daily and then monthly averages following Schlenker and Walker
(Forthcoming).

5.5 AERMOD-based Measure of Exposure

I use AERMOD, which maps firm-level output to house-level exposure, to construct a
measure of a house’s exposure from all industrial sources. Software for using AERMOD
is available on the EPA’s website and includes documentation, Fortran source code,
and pre-compiled executables for Windows.33

As discussed in Section 2.2, house i’s exposure to NOx emissions from firm f at time
t can be written NOxft · h(dfi, θfi;Sf), where Sf contains information on the firm’s
smoke stacks, as well as local meteorological conditions. The data I use for NOxft and
Sf are described in Sections 5.3 and 5.4. A firm’s meteorological data is taken from
the nearest meteorology monitor. The values for (dfi, θfi) are calculated by AERMOD
from firms and houses’ latitude and longitude. AERMOD then outputs aermodift, the
house’s exposure to the firm’s emissions. The house’s total exposure to industrial NOx

emissions is simply aermodit = ∑
f aermodift.

For block group–level exposure, I first calculate exposure at the block level, then
calculate the population-weighted average for each block group. At the block level, I
use the process described above for houses, substituting house-specific latitude and
longitude for the Census-provided internal point for each block.34 This is a more

33. See http://www.epa.gov/scram001/dispersion_prefrec.htm. I use AERMOD version 13350,
compiled using Intel Fortran Compiler 15.0 for Linux and run on the Odyssey cluster supported by the
FAS Division of Science, Research Computing Group at Harvard University.
34. Analyses using Census geographies like block groups or ZCTA’s often use the “centroid” of the

geography as its the representative point in space. However, the Census Bureau is very particular to
note that because these geographies are not convex, the true centroid may lie outside the geography of
interest. As a solution, the Census Bureau calculates “internal points,” which are constrained to be
inside the geography.
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attractive approach than using the block group’s internal point because it accounts
for heterogeneity in population and exposure across the block group and is a closer
approximation to the average exposure to the block group’s residents.

Because AERMOD loops over all firms, houses, and meteorological data, it is very
computationally intensive for such a large sample, so I impose several restrictions on
the data to make calculation more feasible.35 First, I only calculate a firm’s exposure
to houses that are within 20 kilometers of the firm and set exposure outside this
radius to zero. Second, I use one year of meteorological data, 2009, which is also the
only year during which all of the meteorological stations described in Section 5.4 were
operating. Third, I construct an arbitrary 100-meter grid by rounding each house’s
UTM coordinates to the nearest 100 meters and calculate the exposure value at the
center of each grid square. Houses are then assigned exposure according to the grid
square they occupy.

6 Results

6.1 OLS Estimates of Prices and Exposure

I start with simple OLS regressions of log house price on pollution exposure. All
regressions are clustered at the 100-m grid used to calculate aermodit (see Section 5.5).

Column 1 of Table 5 shows the naïve univariate regression of prices on exposure.
Column 2 adds the year-quarter effects, geographic time trends, and SES time trends
from Equation (8), as well as explicit hedonic controls: number of bedrooms, number
of bathrooms, square footage, and lot size. Adding time trends and hedonics in
Column 2 reduces the effect of aermod on prices by about 75%, suggesting that the
coefficient in Column 1 is picking up the fact that houses in polluted areas have different
characteristics (e.g., are smaller), and that secular trends affect both pollution and
house prices. Column 3 adds block group fixed effects which further reduces the effect of
exposure, suggesting that neighborhood-level characteristics are also important. Column
4, the preferred specification defined in Equation (8), trades the block-group effects and
hedonics for property-specific fixed effects. The estimate is not dramatically different
from Column 3, though it is slightly larger.

35. Even with these restrictions, the model takes approximately 210 CPU days to process all the
data.
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In aggregate, the results of Table 5 suggest that omitted variables are a potentially
serious problem when measuring the effect of pollution exposure.

6.2 Event Studies around the Crisis

For an instrument based on the Crisis to yield consistent estimates of the effect of
pollution exposure, the instrument should have no effect before the Crisis began. This
common trends assumption requires that, had the exogenous shock not taken place,
individuals of varying treatment intensity would have maintained their status quo. The
common trends assumption can be assessed by plotting the event study coefficients
from Equation (9), the first stage, and the analogous coefficients from the regression
of price on the instruments. For the first stage, each coefficient π̂y can be interpreted
as the change in relative exposure across areas with different initial exposure levels,
aermod_prei, relative to the difference across these areas in the omitted year, 2000. For
example, if relative exposure does not change between 2000 and 2001, π̂2001 = π̂2000 = 0,
since π2000 is omitted and thus constrained to be zero. If, on the other hand, relative
exposure decreases in high aermod_prei areas, π̂2001 will be negative (π̂2001 < π̂2000 = 0).

As Figure 6 shows, it appears that the common trends assumption holds and the
Crisis had a large effect on both exposure and prices. For both exposure and prices,
Figure 6 shows that aermod_prei had no effect before the Crisis, with sharp effects
afterwards, suggesting that the Crisis makes a good natural experiment and that house
prices respond sharply to exposure levels. As Figure 4 and Figure 5 from Section 4.1
show, the Crisis hit most firms in mid- to late-2000. In Figure 6, we see no significant
change in exposure or price between 1997 and 2000. In 2001, relative exposure suddenly
drops for high aermod_prei properties and continues to decline slightly afterward,
consistent with firms’ drop in emissions. Similarly, house prices jump at the same time
exposure falls and, in a noisy mirror image of the exposure trend, continue to appreciate
slightly over time.

The timing of these sharp jumps immediately after the Crisis also suggests that the
Crisis, and not coincidental secular trends, is driving these changes.

6.3 Instrumental Variables Estimates of Price Effects

Columns 1–3 of Table 6 present first-stage and reduced-form estimates using the “post”
instrument, which provides a more concise summary of the effects of the Crisis. In order
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to show the main effect of aermod_prei on prices, Column 1 uses the same hedonics
and block group fixed effects as Table 5, Column 3. The main effect of aermod_pre
is −0.0029, suggesting that, on average, houses with 1 additional µg/m3 of pre-Crisis
exposure were valued 0.29% lower than comparable houses. The effect of the “post”
instrument, aermod_pre× post, is 0.0033, suggesting that the value of previously high-
pollution houses saw their value equalize with houses that had low pollution throughout
the period.

Columns 2 and 3 show the estimated effect of the post instrument on prices and
exposure, respectively, using the preferred specification with property fixed effects (see
Table A1 for full output). The reduced form estimate in Column 2 is similar to that of
Column 1 and shows that house prices increased 0.3% per unit of treatment intensity.
At the average value of aermod_pre, this translates to a 1.7% increase in value, or
$7,324 for a house of average value in 2000. Similarly, Column 3 shows that exposure
decreased by 0.433 µg/m3 NOx/ozone for every unit of treatment intensity, or 2.24
µg/m3 for the average value of aermod_prei.

Columns 4 and 5 of Table 6 present the 2SLS results using the “post” instrument,
aermod_prei×postt, and the annual set of instruments, aermod_prei× δy, respectively.
(The full results of Column 4 are shown in Table A1.) These results are almost identical
and suggest that an additional µg/m3 of exposure to NOx emissions decreases the value
of a house by about 0.7%. This translates to a MWTP to reduce exposure of $3,272 per
µg/m3. While not directly comparable, this figure more than covers the PM2.5 mortality
cost of $1,600 per µg/m3 borne by a family of two adults and one child discussed in
Section 2.

The 2SLS estimates do not appear to suffer from weak-instruments bias, as evidenced
by the instruments’ partial F statistics from the first stage and the LIML results also
presented in Table 6. Following Stock and Yogo (2002) and Stock, Wright, and Yogo
(2002), I use the instruments’ partial F statistic in the first stage to assess whether
the instruments are weak. The F statistics, assuming spherical errors, for the post
and annual instruments are 6,323 and 923, respectively, leaving little worry about a
weak instruments problem.36 The LIML estimates in column 3 provide further evidence

36. Following Stock and Yogo (2002) and Stock, Wright, and Yogo (2002), it has become standard
practice to measure the strength of excluded instruments using the partial F statistic from the first
stage. However, the usual rules of thumb from Stock, Wright, and Yogo assume spherical error terms.
The correct test statistic for robust first-stage F stats is an open topic of research (see, e.g., Montiel
Olea and Pflueger 2013). Therefore, I follow the approach of Coglianese et al. (2015) and report the
non-robust F statistics in Table 6 for comparison against the usual rule of thumb.
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against weak instruments because the LIML estimator is median-unbiased and thus
more reliable than 2SLS when instruments are weak (Stock, Wright, and Yogo 2002).
If the LIML estimates differ from 2SLS, concerns about weak instruments could be
warranted. However, that does not appear to be the case here as the 2SLS and LIML
estimates are virtually identical.

These estimates are corroborated by the results of block group–level regressions on
monthly rent costs, which are shown in Table 7. The rent regressions are unsurprisingly
noisier than those for house prices. Each block group’s aermod calculation is based
on the aermod value at its constituent blocks’ interior points (see Section 5.5), which
introduces additional noise. In addition, 20 percent of the block group data have invalid
values for monthly rent and were dropped. Nevertheless, the results in Table 7 are very
close to those in Table 6 though they are unsurprisingly imprecise.

The 2SLS estimates are also robust to arbitrary spatial correlation across the error
terms. This is shown in Table 8 by re-estimating the standard errors from the preferred
specification (Table 6, column 1) using the spatial HAC (SHAC) variance-covariance
estimator of Conley (1999) and Kelejian and Prucha (2007).37 I use a triangle kernel
with bandwidths from 200 meters to 1600 meters (1 mile) and list the standard error
and corresponding p-value for each bandwidth. The p-value at each bandwidth is
less than 0.05, suggesting that the estimates are indeed statistically significant. The
standard errors also increase with bandwidth at a decreasing rate, further suggesting
that the estimates are credibly precise.

6.4 Comparison to Standard Methods

To verify that the large MWTP estimate found in Section 6.3 is not being driven by a
peculiarity of the data or natural experiment, I re-estimate MWTP using non–wind-
based instruments standard in the literature. I use two standard ways of constructing
an instrument based on the Crisis: geographic difference-in-differences and kernel-based
measures of exposure similar to those used by Banzhaf and Walsh (2008).

37. SHAC standard errors can be thought of as an extension of Newey–West standard errors from
discrete time to continuous distance. Specifically,
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where K is some kernel and dij is some metric of the distance between units i and j.
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6.4.1 Geographic Diff-in-diff and Interpolation

The first standard research design is the geographic diff-in-diff. The equation to estimate
is similar to Equation (8), but each pair of house i and firm f is treated as a separate
observation so that the same sale price pit can appear with multiple firms:

ln pift = nearif × postt · β + αif + XitΓ + εift (12)

where the entity fixed effects are now house-firm effects instead of house effects; Xit

includes the same time and demographic controls as Equation (8); and nearif is a
dummy variable for whether house i is within the set treatment radius of firm f .38 I
estimate this model on the full study sample twice, once with a 1-mile treatment radius
and a 2-mile control, and once with a 2-mile treatment and 4-mile control.

The reduced-form estimates, shown in columns 1 and 4 of Table 9, are small,
imprecise, and have different signs. For the 1-mile treatment, the average effect of the
Crisis on log price is 0.0049, about one third the size of the effect estimated in Table 6,
column 2, for a house of average treatment intensity (0.017). The 2-mile estimate
implies that houses close to firms lost value because of the Crisis, but this estimate is
also imprecise.

The derivation of geographic diff-in-diff bias in Section 2.1 predicts that the first-
stage and reduced-form estimates should have the same bias and that, with a good
measure of exposure, the second-stage estimate should be unbiased, though potentially
noisy. To test this, I use the firm-specific exposure measure aermodift as the endogenous
regressor. For the 1-mile treatment radius, the biases appear to be roughly equal. The
reduced-form effect is 32% of the average reduced-form effect found in Table 6, column
2, while the first stage effect is 22% of its AERMOD-based equivalent. Consequently,
the second stage coefficient, -0.0098, is similar to the estimates in Table 6 but very
imprecise. For the 2-mile treatment, the reduced-form and first-stage estimates recover
only 7% and 1% of the wind-based IV estimates, respectively, and all three estimates
are imprecise.

For a more direct comparison with prior literature, I also estimate geographic diff-in-
diffs using interpolated NOx and ozone from pollution monitors and present the results
in Table 10. As before, the interpolation is calculated using inverse distance weighting
using monitors with full NOx and ozone coverage during the sample period that are no

38. For a similar application, see Currie et al. (2015).
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more than 10 km from the point being interpolated. Estimates are very sensitive to the
treatment and control radii and the instruments used and are generally imprecise or
have the wrong sign. The second-stage estimate of ozone’s effect on prices in sub-table
B, column 6 is the only second-stage estimate that has the correct sign and is precisely
estimated. However, it is not robust to the choice of instruments, and the estimate
using the “annual” instrument in column 7 is imprecise with the wrong sign.

6.4.2 Kernel-based Exposure

The second non–wind-based research design uses radial kernel densities to map firm
emissions to local exposure. Specifically, I use a triangle kernel with 5-km bandwidth
and a uniform kernel with 2-km bandwidth as the proxy for the spatial distribution
h instead of AERMOD. This is similar to the approach taken by Banzhaf and Walsh
(2008), who use the equivalent of a uniform kernel with a 1 mile (1600 meter) bandwidth.
The kernel approach should be an improvement over the geographic diff-in-diff because
it can account for neighboring firms’ overlapping treatment areas. To make the unit-less
kernel-based variables comparable to the AERMOD measure, I re-scale them so that
their sample average is the same magnitude as the sample average of aermodit. Once
again, the estimation equation is almost identical to Equation (8), except that the
exposure measure and instruments are constructed using the relevant kernel density
instead of AERMOD. Table 11 presents the results, with the triangle-based regressions
in sub-table A and the uniform-based regressions in sub-table B.

The kernel-based estimates, shown in Table 11, are also small and imprecise. Column
1 of each sub-table shows the reduced form estimates, which are small and imprecise,
with the triangle-based estimate having the wrong sign. Column 2 shows the first stage
using aermodit as the endogenous regressor, which is included to be more comparable
to my preferred specification and to overcome the fact that the kernel variables have an
arbitrary scale. In all cases the excluded instruments are defined using the kernel-based
exposure.

These estimates are imprecise and again imply a much smaller average effect than
Table 6, with neither effect being more than 10% of the wind-based result. Column 3
shows the first-stage regressions using the kernel-based exposure measure, which are
precise but hard to compare to Table 6 because of the scaling issue. Columns 4 and
5 show the 2SLS estimates using aermodit and kernel-defined exposure, respectively,
as the endogenous regressors. When using instruments based on the triangle kernel,
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the estimates have the wrong sign due to the wrong-signed first stage. When using
uniform-based instruments, the estimate in column 4 is almost 50% of the preferred
AERMOD-based estimates in Table 6, but is imprecise, while the estimate in column 5
is both economically and statistically insignificant.

6.4.3 Summary and Comparison to Prior Research

Table 12 summarizes all the estimates from above along with previously discussed
estimates from the literature. The first column lists the model or paper that generated
the estimate; the second column lists the estimated effect of the Crisis on average house
prices for models from this paper; and the third column lists the estimated MWTP for
a 1 µg/m3 reduction in pollution. For the models estimated in this paper, the pollutant
is NOx and/or ozone, while for Smith and Huang (1995) and Chay and Greenstone
(2005) it is TSP, and for Bayer, Keohane, and Timmins (2009) it is PM10 (see footnote
4). For this comparison, I do not combine non–wind-based designs with aermodit in
any way, as the point of the comparison is to gauge the importance of the wind. Hence,
there are no MWTP estimates from the geographic diff-in-diff models because the
geographic diff-in-diff has no independent measure of exposure. I also do not include
the interpolated regressions from Table 10 because the are based on a slightly different
geographic sample.

There are several points of interest in Table 12 that support the predictions made
in Section 2.1 that standard estimates may be biased downward. First and foremost,
the AERMOD-based estimates dwarf all other estimates in magnitude and precision.
Second, the uniform kernel estimate, though imprecise, is not dissimilar from prior
research. Third, the instrumental variables estimates from prior research (Chay and
Greenstone 2005; Bayer, Keohane, and Timmins 2009) are not dramatically different
from the prior OLS estimates (Smith and Huang 1995)—the OLS estimates fall between
the IV estimates. All of these observations are consistent argument in Section 2 that
standard methods of measuring exposure are biased, even when quasi-experiments and
instrumental variables are used.

6.5 Evidence of Visibility Effects

As discussed in Section 3.2, if buyers suffer from imperfect information or salience
effects, they may react to transient or foreseen changes in pollution exposure. If this is
case, we should see the effect of aermodit vary seasonally, with a peak in Q2 if toxicity
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is more important and a peak in Q4 if salience is more important. In contrast, if there
are no information or salience problems, then we should see aermodit have a similar
effect in every quarter, since exposure at any one time should not matter relative to
long-term exposure.

Table 13 estimates Equation (10) which allows the effect of aermodit to vary by
quarter. Column 1 reports the 2SLS regression using the annual set of instruments
to identify the four endogenous regressors and Column 2 reports the analogous LIML
estimates. In both specifications, aermodit has the biggest effect in Q4, consistent
with a model where agents use their physical senses to detect pollution and fail to
anticipate future pollution exposure when pollution is less salient. However, while the
point estimate on Q2 is statistically imprecise, it is still larger than the point estimates
in Table 6, which may suggest that even though ozone is not easy to see, it is so toxic
that the market may still respond do it, if only partially. The fact that the Q2 effect
is about half the size of the Q4 effect suggests that visibility effects dominate toxicity.
The small or wrong-signed effects in Q1 and Q3, when both salience and toxicity are
middling, further support the conclusion that buyers are incorrectly assessing long-run
air quality.

6.6 Geographic Sorting and Home-ownership

As discussed in Section 3.3, differential sorting behavior and home-ownership rates
across income groups can shed light on how the gains from the Crisis-induced air quality
improvement were distributed. Such behavior would also be evidence that the price
effects are driven by real changes in demand for new amenities and not changes in
housing market dynamics, e.g., changes in lending standards for low-income households.

Table 14 shows estimates at the block-group level, following Equation (11), for five
outcomes: log population, log number of households, population per square mile, log
median household income, and the fraction of people over age 25 who did not graduate
high school. Sub-table A shows results from univariate regressions of each outcome on
aermodnt. The effects on income and education are in line with income stratification
and Tiebout sorting while the population results are mixed. Sub-table B adds block
group fixed effects and the demographic and time controls listed in Section 4.3. These
controls absorb most of the variation in local conditions that was previously picked up
by exposure and all estimates are small and imprecise.

The reduced-form estimates, shown in sub-table C of Table 14, suggest that the
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Crisis caused neighborhoods to become relatively richer and better educated, but less
populated than they would have been otherwise. The 2SLS estimates in sub-table
D unsurprisingly mirror the reduced-form estimates. This pattern is consistent with
either low-income and low-education individuals leaving improved areas or fewer such
individuals moving into improved areas than otherwise would have. Because of the
inclusion of block group fixed effects, these coefficients can only tell us about relative
changes, not absolute ones.

Table 15 shows reduced-form estimates of the Crisis’ effect on log population by
educational attainment, which shows that the decrease in population was indeed driven
by those with low educational attainment. Column 1 shows that block groups gained
2.1% fewer low-ed residents, relative to year 2000 levels, for every unit of treatment
intensity, or 13% at the sample average. These regressions, which are weighted by
the block group’s population in 2000 to be representative of the whole sample, imply
that the sample region would have had about 60,000 more low-education residents had
the Crisis not occurred. Without knowing the counterfactual net migration, however,
it is impossible to say whether this is because the Crisis pushed these people out or
prevented them from moving in. It may also be the case that emigrant households
were homeowners who simply responded to their new choice set after the home value
increased. However, this does not appear to be the case for low-income households.

The Crisis provided a windfall to incumbent homeowners which appears to have
accrued primarily to individuals at the top of the income distribution. Figure 7a plots
the results of a local linear regression of a block group’s home-ownership rate in 2000
on its median household income in 2000, weighted by the block group’s population in
2000. Unsurprisingly, the ownership rate increases with income, from around 10% at
the bottom to about 95% at the top. However, poorer areas may have also experienced
the largest air quality improvements since these areas were, on average, more polluted
to begin with.

The dashed line in Figure 7b plots house-price windfall per capita by income, again
using a local linear regression, under the assumption that all residents own their own
home. As the figure shows, poorer areas did indeed see much larger gains on average:
the lowest-income areas see a gain of about $3,500 per person, while the highest-income
areas receive roughly $2,000. But this differential is not enough to offset the much
wider gap in home-ownership rates, as shown by the solid line in Figure 7b which plots
the windfall per capita for local owner-residents only. It is important to note that this
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does not consider the characteristics of landlords for low-income areas. It could be that
the landlords themselves are also low-income, which would make the actual distribution
of benefits closer to the dashed line than the solid line.

7 Welfare Implications and Conclusion

This paper provides evidence that clean air has a much higher value than previously
believed. The estimated MWTP, $3,272 per µg/m3 of exposure to NOx emissions, is
an order of magnitude larger than past estimates (see Section 6.4) and also more in
line with the expected health benefits (see Section 2). The distinguishing feature of
these estimates is that they rely on atmospheric science to determine who is and is
not exposed to pollution, while standard estimates do not. When re-estimated using
standard, non–wind-based measures, MWTP is small or wrongly signed and statistically
insignificant.

Furthermore, the econometric problems behind this difference are not unique to
the housing market, raising the concern that other estimates of pollution’s effects, like
those on infant health, are also biased. This in turn raises the question of whether the
MWTP estimated here does indeed cover the estimated health costs since they may be
downward biased themselves and is a topic for future work.39

The fact that air pollution is far more costly than previously believed has significant
policy implications, as air quality regulations are likely to be undervalued. For example,
Fowlie, Holland, and Mansur (2012) note that RECLAIM has been frequently criticized
as an ineffective policy. But the results here imply that reducing emissions in SCAQMD
from 1995 levels to the 2005 RTC cap is worth roughly $502 million annually, far
more than the estimated annual abatement costs of $38 million.40 The EPA’s troubled
attempts to tighten ozone standards, which met resistance on cost-benefit grounds, are
another possible example of policy that is grossly undervalued.41 Optimal subsidies for

39. Most estimates of the mortality and morbidity dose response to pollutants are from the epidemi-
ology literature and may suffer from omitted variables bias as well. Thus, it is not immediately clear
whether current estimates of direct health effects are too high or too low.
40. There are naturally many general equilibrium costs to consider as well, like those borne by

displaced workers (see Walker 2013). SCAQMD asks firms to report how many jobs are lost or gained
due to RECLAIM every year. Through 1999, firms reported a total net employment change of −109
workers which they attributed to RECLAIM (SCAQMD 2000). Abatement costs based on SCAQMD
calculations (SCAQMD 2000). See also Footnote 2.
41. See, e.g., “Obama Asks EPA to Pull Ozone Rule,” Wall Street Journal, September 3, 2011; “EPA

Sets New Ozone Standard, Disappointing All Sides,” New York Times, October 1, 2015.
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renewable energy research and electric vehicle take-up are other potential examples.
Vehicle emissions standards are yet another example of potentially undervalued

policy. Since coming to light, several back-of-the-envelope estimates of the costs of
Volkswagen’s cheating on diesel emission tests have been put forward. The Associated
Press cite a rough estimate from environmental engineers of $40–170 million per year
due to mortality (Borenstein 2015). The radio magazine Marketplace cites economists’
rough estimates of health costs of $80 million per year (Garrison 2015). Back-of-envelope
damages based on this paper’s results imply the total cheating cost in the United States
alone was $282 million per year.42

Consumer welfare is also affected by the fact that people sometimes have a hard
time discerning between areas with clean and dirty air, which affects their valuation
of homes and where they choose to live. Agents only respond to visible NOx, not
invisible ozone, even though ozone is far more toxic. This could lead to “perverse”
sorting, where people with strong preferences for clean air sort into more hazardous
areas because ozone-rich air still looks clean. The problem of imperfect information
and/or salience could potentially be solved through a cheap informational intervention;
providing neighborhood-level information about seasonal and long-term pollution trends
for houses on the market could yield large welfare gains per dollar spent.

More importantly, the sorting results suggest that high-income households enjoyed
more of the albeit large welfare gain than low-income ones. The large outmigration
of low-education residents, coupled with their low rates of home-ownership, raises the
possibility that they were even made worse off by the improvement in air quality and
would have preferred it never have happened. This would imply a steep trade off
between equity and efficiency, however large the efficiency gains may be.

42. To get this number, I assume that the extra Volkswagen NOx emissions were emitted uniformly
by SCAQMD firms, then multiply MWTP ($3,272) with the resulting exposure and the households
exposed.
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Appendix

A Firm Data Construction

A.1 Geocoding

The accurate geocoding of pollution sources is obviously critical when analyzing the
effect these sources have on the surrounding population. Administrative records on the
latitude and longitude of each smoke stack operated by the firm would be the ideal data.
Regulators often collect this data for the explicit purpose of dispersion modeling, and
though SCAQMD does collect this data, they are unavailable for public use (SCAQMD
2015b). In lieu of direct geographic data for each smoke stack, I follow the literature
and simply geocode the firms’ street addresses, taking care to use the actual operating
address of the firm and not a corporate or mailing address which are often listed in
databases. For large firms and firms that match to interpolated street addresses instead
of parcel centroids, I double-checked the coordinates using satellite photos from Google
Maps to make sure the geographic point that represents the firm is reasonably close to
the actual smoke stacks.43

A.2 Facility ID

SCAQMD assigns each facility an ID number; however, a facility may have more than
one ID number in the data, both over time and cross-sectionally. This is primarily a
concern when matching firms to the NEI, as described in Appendix A.3. It might also
affect the pattern of firm behavior described by Figure 5, though this figure is only
descriptive and not used in any calculations.

A facility’s ID can change under a number of circumstances: the facility is sold,
changes its name, or some part of its address changes. For the most part, these changes
occur for superficial reasons, e.g., a zip code or street suffix is changed. To construct
unique facility ID’s, I flagged every pair of facilities less than 400 meters apart and
visually inspected satellite photos and emissions data for every cluster of neighboring
facilities. First, firms were merged if they occupied the same or neighboring parcels and
shared breaks in their time series of emissions. For example, Facility A emits 25 tons

43. This is potentially important because the firm’s “store-front” address right on the street is often
at the edge of the property, far away from the smoke stacks. Using unchecked street addresses can
introduce significant errors (1–2 km) for firms that occupy large parcels of land.
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per quarter from 1994 to 1999Q3 and then is missing from the data, while Facility B,
located at the same parcel of land as A, enters the data in 1999Q4 and begins emitting
25 tons per quarter. Facilities were also merged if they had similar names and occupied
the same or neighboring parcels of land. These merges were verified by checking whether
or not the firms appeared separately in the NEI.

A.3 Stack Data from the NEI

Data for each firm’s smoke stacks is taken from the National Emissions Inventory (NEI)
from 1999 and 2002. Besides the smoke stack parameters, the NEI also has data on
firm’s name, address, SIC, and the equipment’s SSC, and the estimated emissions by
pollutant for each stack.44 It also includes the ID number assigned to the facility by
state-level regulators. For SCAQMD firms, this “state ID” consists of a county code, an
air basin code, an air district code, and the SCAQMD-assigned facility ID. Using this
reconstructed ID, I was able to match most facilities in the SCAQMD emissions data
to the NEI using either their own facility ID or an ID from a facility I had previously
matched to it as described in section A.2. I used the 2002 NEI data whenever possible,
falling back to the 1999 database when necessary. For facilities whose ID’s did not
match either dataset, I tried to match them using firm address and name. Firms that
still did not match were almost all small firms that had ceased to exist before the NEI
1999 data was collected. These firms should have little impact on the overall results
and were dropped. For matched facilities, I verified that individual stacks were not
duplicated.

Many of the stack parameters in the NEI are flagged as imputed values. The
imputation process was not well documented, so I re-imputed them using the median
stack parameters from all non-imputed stacks in the SIC and SCC group. Finally,
when passing the stack parameters to AERMOD, I weighted each stack according to
its reported emissions in the NEI.

44. The Source Classification Codes (SCC) for point pollution sources are a hierarchical index used
by the EPA that categorize pollution-generating equipment by combustion type, fuel type, and size. It
is analogous to the hierarchical SIC and NAICS industry codes.
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Figures and Tables

Figure 1: Geographic Diff-in-diff with Wind

αN + βX

βϕX

αN

r0r1

Notes: Dashed circle denotes boundary of geographic diff-in-diff’s
treatment group, solid circle denotes boundary of control group
and sample. Shaded area is the true treatment area downwind.
Values r0 and r1 are treatment and control radii. Other values are
reduced form effects of the firm, see Equation (1) and Section 2.1.
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Figure 2: Exposure due to Scatterwood Generating Station, 1999

(a) All land within 20 km

(b) Zoomed

Notes: The color of each square is determined by the average aermod exposure due to
the Scatterwood Generating Station in 1999. Each plotted square is 100 meters wide.
Breaks in the color scale are set at order statistics of the plotted sample: minimum,
1–9th deciles, the 95th and 99th percentiles, and the maximum.
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Figure 3: Total Exposure in Sample Region, 1999

(a) AERMOD-based Exposure

(b) Interpolated (IDW) AERMOD-based Exposure from Monitor Locations

Notes: Sub-figure (a) plots the average exposure due to all firms. Sub-figure (b) plots the average exposure
as interpolated from monitor locations marked with black circles. Breaks in the color scale are set at order
statistics of the plotted sample in sub-figure (a): minimum, 1–9th deciles, the 95th and 99th percentiles,
and the maximum. Each plotted square is 100 meters wide.
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Figure 4: RECLAIM Market
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Notes: “Total RTCs” is the number of RTCs expiring in the calendar year. “Price” is
the average of all arms-length transactions in a month across all RTC vintages.
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Figure 5: Scaled Emissions by Firm Type

(a) Quarterly
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(b) Annual
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Notes: Firm emissions are scaled by firm’s own maximum emissions. Sample is
restricted to firms that operated in at least 8 quarters.
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Figure 6: Pollution Exposure and House Prices around the Crisis
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Notes: Plotted points are coefficients from a regression of the specified outcome on the
“annual” instruments: aermod_pre interacted with year dummies. See Equation (9).
Here, the year of the Crisis, 2000, is the omitted group. Sample and other controls as
in Table 6, columns 2–6. aermod_pre is the average of the aermod exposure variable
for 1995 and 1996. Average value of aermod_pre is 5.172.
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Figure 7: Home-ownership and Price Windfall by Income

(a) Home-ownership rate
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Notes: Plots are the result of local linear regressions using an Epanechnikov
kernel with bandwith of 5. Sample is Census 2000 block groups, weighted
by population. In subplot B, the dashed line is the gain to owners of units
occupied by a household with the given income, and the solid line is the
gain to residents.
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Table 1: Seasonal Trends in Pollution

Unconditional Mean Regression
Haze NOx Ozone Haze NOx Ozone

Q1 0.200 0.359 -0.626
Q2 -0.616 -0.561 0.701 -0.805*** -0.904** 1.312***

[0.188] [0.292] [0.166]
Q3 -0.329 -0.448 0.467 -0.522** -0.797** 1.084**

[0.183] [0.285] [0.306]
Q4 0.748 0.654 -0.545 0.552** 0.295** 0.084

[0.154] [0.087] [0.094]
Notes: N=499. Data are monthly averages of hourly readings from
the 6 monitors in and near SCAQMD that had readings for all three
pollution measures. Each cell is the raw mean of the measure in a
quarter or the conditional mean calculated from a regression of the
pollution measure on quarter dummies and monitor-year dummies.
Sample period is 1991–1997; all monitors have at least 82 of 84 possible
monthly observations. Pollution measures have been standardized to
have mean 0, standard deviation 1. “Haze” is the coefficient of haze.
Standard errors, clustered by monitor, in brackets: *** p < 0.01,
** p < 0.05, * p < 0.1.
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Table 2: House Summary Statistics

Never Sold Sold Once Repeat Sales
Pre Post Pre Post

Sale Price 394,621 541,016 420,397 603,089
(284,495) (357,224) (303,028) (395,970)

Lot Size 19,963 14,831 19,454 19,444 14,650
(943,394) (812,098) (918,742) (992,280) (807,084)

Square Feet 1,537 1,611 1,534 1,573 1,491
(647) (721) (689) (707) (654)

Year Built 1950 1952 1950 1951 1950
(15.15) (15.61) (15.77) (16.96) (16.78)

Bedrooms
1 0.01 0.01 0.01 0.01 0.02
2 0.23 0.22 0.24 0.25 0.27
3 0.48 0.48 0.49 0.49 0.49
4 0.22 0.23 0.21 0.21 0.19
5+ 0.05 0.05 0.05 0.04 0.03

Bathrooms
1 0.34 0.29 0.33 0.31 0.35
2 0.47 0.47 0.46 0.45 0.45
3 0.13 0.16 0.13 0.15 0.13
4+ 0.03 0.04 0.04 0.05 0.04

Sold in Quarter
1 0.19 0.22 0.20 0.21
2 0.28 0.27 0.29 0.28
3 0.28 0.28 0.28 0.27
4 0.25 0.24 0.24 0.23

Times Sold 2.14
(0.38)

Total Properties 240,110 84,011 19,539
Notes: Summary statistics from regression sample as described in Section 5.1. Table
lists sample means with standard deviations given in parentheses.
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Table 3: Block Group Summary Statistics

Total Mean
2000 2005/9 2000 2005/9

Population 2,775,700 2,811,468 1,435 1,454
(814) (867)

Households 950,591 952,008 492 492
(322) (332)

Pop. Density (pop/mi2) 13,423 13,518
(8,389) (8,815)

Household Income (BG Median) 49,292 64,211
(23,411) (32,920)

Population over age 25 1,717,881 1,796,814 888 929
(505) (564)

Educational Attainment (count)
Less than High School 458,399 384,055 237 199

(221) (209)
High School Grad 830,050 895,603 429 463

(269) (294)
More than High School 429,432 517,156 222 267

(262) (312)
Educational Attainment (fraction)
Less than High School 0.28 0.22

(0.22) (0.19)
High School Grad 0.48 0.50

(0.13) (0.14)
More than High School 0.24 0.28

(0.19) (0.21)
Race/Ethnicity (count)
White (non-Hispanic) 852,136 787,815 441 407

(468) (466)
Hispanic 1,030,236 1,147,634 533 593

(546) (601)
Black 507,488 468,462 262 242

(380) (378)
Race/Ethnicity (fraction)
White (non-Hispanic) 0.34 0.32

(0.31) (0.30)
Hispanic 0.34 0.38

(0.26) (0.28)
Black 0.19 0.17

(0.25) (0.24)
Notes: Number of block groups is 1,934. Block groups with fewer than 400 people in
2000 are excluded from regression sample and so are excluded here. Data for 2000 comes
from the 2000 Census. Data for 2005/9 comes from the 2005–2009 ACS 5-year sample
and is labeled “2005” elsewhere. All educational attainment variables are restricted
to people who are at least 25 years old. Income is denominated in nominal dollars.
Standard deviations in parentheses.
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Table 4: Firm Summary Statistics by Industry

(a) Tons of NOx Emitted

Industry Mean Median Share of Total
1998 2002 1998 2002 1998 2002

Petroleum Refining 665.20 479.08 818.57 492.87 51.1% 63.4%
Electric Services 213.19 60.14 100.73 48.94 22.9% 11.1%
Glass Containers 199.27 107.82 145.04 77.92 4.6% 4.3%
Crude Petroleum and Natrual Gas 36.43 8.86 5.72 1.42 3.6% 1.5%
Other Petroleum and Coal Products 321.18 301.88 321.18 301.88 2.5% 4.0%
Steam and Air-Conditioning Supply 38.80 5.65 14.48 3.71 1.8% 0.4%
Other Industrial Inorganic Chemicals 39.70 37.01 34.50 43.59 1.2% 1.5%
Secondary Smelting and Refining 50.84 27.34 52.62 27.63 1.2% 1.1%
Flat Glass 116.21 50.52 116.21 50.52 0.9% 0.7%
Gas and other Services 107.87 9.45 107.87 9.45 0.8% 0.1%
Other Industries 9.61 6.70 4.64 2.91 9.3% 11.9%
All firms 71.47 39.99 6.98 4.26 100.0% 100.0%

(b) Physical Characteristics

Industry Smoke Stack Dist. to
Height (m) Diameter (m) Velocity (m/s) Gas Temp. (K) Met. Site (km) Firms

Petroleum Refining 30.10 1.59 11.83 548.83 6.52 10
Electric Services 40.84 3.69 19.49 481.12 7.46 14
Glass Containers 26.09 1.23 13.41 495.60 7.82 3
Crude Petroleum and Natrual Gas 6.85 0.34 13.56 595.11 6.09 13
Other Petroleum and Coal Products 14.66 0.63 14.56 341.32 6.06 1
Steam and Air-Conditioning Supply 19.68 0.83 12.67 468.18 6.76 6
Other Industrial Inorganic Chemicals 35.23 0.97 11.87 540.11 6.09 4
Secondary Smelting and Refining 9.35 0.69 14.11 406.11 5.52 3
Flat Glass 10.97 1.28 13.60 547.04 5.34 1
Gas and other Services 18.29 4.36 22.49 727.59 6.25 1
Other Industries 12.43 0.82 10.01 486.12 6.17 126
All firms 16.14 1.08 11.46 497.27 6.31 182
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Table 5: Pollution’s effect on House Price, OLS

(1) (2) (3) (4)

Aermod -0.0507*** -0.0139*** -0.0030*** -0.0033***
[0.0019] [0.0009] [0.0006] [0.0010]

Controls N Y Y Y
Fixed Effects None None BG House
R2 0.0461 0.7678 0.8649 0.9483
N 118,522 118,522 118,522 41,771

Notes: Outcome variable is ln house price. Controls include year-quarter
effects, quadratic time trends by local geography and year 2000 SES
variables, and hedonics: lot size, bedrooms, bathrooms, square feet.
Observations absorbed by fixed effects are dropped. Standard errors,
clustered at 100-m grid, in brackets: *** p < 0.01, ** p < 0.05, * p < 0.1.

Table 6: Pollution’s effect on House Price, Instrumental Variables

(1) (2) (3) (4) (5) (6)
ln Price ln Price Aermod ln Price ln Price ln Price

Aermod -0.0073*** -0.0073*** -0.0073***
[0.0024] [0.0023] [0.0024]

Aermod_pre×post 0.0033*** 0.0032*** -0.4328***
[0.0005] [0.0008] [0.0748]

Aermod_pre -0.0029**
[0.0012]

Fixed Effects BG House House House House House
Method OLS OLS OLS 2SLS 2SLS LIML
IV set Post Annual Annual
κ 1 1 1.0003
1st Stage F-stat 6388 932 932
R2 0.865 0.948 0.911
N 118,522 41,771 41,771 41,771 41,771 41,771

Notes: Sample average of aermod_pre is 5.172. In addition to fixed effects, controls include year-quarter
effects and quadratic time trends by local geography and year 2000 SES variables (see Section 4.3). For
full output of columns 2–4, see Table A1. Column 1 also includes the following hedonic controls: lot
size, bedrooms, bathrooms, square feet. “Post” IV is aermod_pre× post, “Annual” IV is aermod_pre
interacted with year dummies. First-stage F stat assumes homoskedasticity. Observations absorbed by
fixed effects are dropped. Standard errors, clustered at 100-m grid, in brackets: *** p < 0.01, ** p < 0.05,
* p < 0.1.
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Table 7: Effect on Block Group Median Monthly Rent

(1) (2) (3) (4) (5) (6)
ln Rent ln Rent Aermod Aermod ln Rent ln Rent

Aermod_pre×post 0.0022 0.0026 -0.2518*** -0.2489***
[0.0015] [0.0018] [0.0181] [0.0227]

Aermod -0.0089 -0.0106
[0.0061] [0.0072]

Method OLS OLS OLS OLS 2SLS 2SLS
Weighted by Pop. X X X
R2 0.9163 0.9331 0.9881 0.9883

Notes: N=3,162. Excluded instrument in 2SLS regressions is aermod_pre× post. Rents with
error codes ($0) or top codes ($2,001) are dropped from the sample. Sample and controls are
otherwise the same as in Table 14, plus an interaction of median rent in 2000 with post. Sample
average of aermod_pre is 6.455. Standard errors, clustered by tract, in brackets: *** p < 0.01,
** p < 0.05, * p < 0.1.

Table 8: Robustness to Spatially Correlated Error Terms

Std. Err. p-value

Baseline (clustered) 0.0024 0.0022
SHAC by Bandwidth (m)
200 0.0025 0.0036
400 0.0028 0.0086
600 0.0031 0.0178
800 0.0033 0.0279
1000 0.0035 0.0362
1200 0.0036 0.0414
1400 0.0037 0.0452
1600 0.0037 0.0480

Notes: N=41,771. Each row re-estimates the stan-
dard error of aermod in the 2SLS regression in Ta-
ble 6, column 4 using the non-parametric Spatial
HAC (SHAC) method of Conley (1999) and Kelejian
and Prucha (2007). Kernel used is a triangle with
the listed bandwidth. Clustered standard error from
baseline regression is given on the first row.
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Table 9: Price Effects with Geographic Diff-in-diff

(1) (2) (3) (4) (5) (6)
0–1 vs. 1–2 miles 0–2 vs. 2–4 miles

ln Price Aermod ln Price ln Price Aermod ln Price

Near×post 0.0049 -0.4991*** -0.0011 0.0237
[0.0049] [0.0566] [0.0023] [0.0222]

Aermod -0.0098 -0.0461
[0.0098] [0.1029]

Method OLS OLS 2SLS OLS OLS 2SLS
R2 0.9453 0.9095 0.9416 0.9104
N 92,807 92,807 92,807 430,836 430,836 430,836

Notes: Unit of observation is house-firm-quarter. Near=1 for houses closer to firm,
e.g., 0–x miles as specified. Controls include house-firm effects, year-quarter effects,
and local quadratic time trends. Observations absorbed by fixed effects are dropped.
Standard errors, clustered at 100-m grid, in brackets: *** p < 0.01, ** p < 0.05,
* p < 0.1.
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Table 10: Price Effects with Geographic Diff-in-diff and Interpolation

A. 1-mile treatment, 2-mile control
(1) (2) (3) (4) (5) (6) (7)

ln Price NOx ln Price ln Price Ozone ln Price ln Price

Near×post 0.0056 0.3398 -0.0846
[0.0082] [0.4708] [0.1125]

NOx 0.0164 -0.0070
[0.0328] [0.0065]

Ozone -0.0658 0.0028
[0.1308] [0.0225]

Method OLS OLS 2SLS 2SLS OLS 2SLS 2SLS
IV Set Post Annual Post Annual
1st Stage F-stat 0.9 2.0 0.9 3.2

B. 2-mile treatment, 4-mile control
(1) (2) (3) (4) (5) (6) (7)

ln Price NOx ln Price ln Price Ozone ln Price ln Price

Near×post -0.0083** -1.0768*** 0.2228***
[0.0034] [0.1860] [0.0452]

NOx 0.0077** 0.0018
[0.0034] [0.0023]

Ozone -0.0373** 0.0037
[0.0175] [0.0051]

Method OLS OLS 2SLS 2SLS OLS 2SLS 2SLS
IV Set Post Annual Post Annual
1st Stage F-stat 50.9 12.1 38.5 39.8

C. 3-mile treatment, 6-mile control
(1) (2) (3) (4) (5) (6) (7)

ln Price NOx ln Price ln Price Ozone ln Price ln Price

Near×post -0.0017 -0.5263*** 0.1365***
[0.0022] [0.1082] [0.0276]

NOx 0.0033 0.0051
[0.0043] [0.0037]

Ozone -0.0126 0.0018
[0.0166] [0.0088]

Method OLS OLS 2SLS 2SLS OLS 2SLS 2SLS
IV Set Post Annual Post Annual
1st Stage F-stat 26.4 4.8 32.1 15.0

Notes: N for each subtable is 50,746; 264,234; and 423,945, respectively. Unit of observation is house-firm-
quarter. NOx and ozone exposure interpolated from monitors using inverse distance weighting. Near=1 for
houses within specified treatment radius. Sample restricted to houses within specified control radius. IV Set
"Post" is Near×post. IV Set "Annual" is Near times year dummies. 1st Stage F-stat assumes spherical errors.
Controls include house-firm effects, year-quarter effects, and quadratic time trends by local geography and
year 2000 SES variables. Observations absorbed by fixed effects are dropped. Standard errors, clustered at
100-m grid, in brackets: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 11: Price Effects with Kernel-defined Instruments and Exposure

A. Triangle Kernel (5-km band)
(1) (2) (3) (4) (5)

ln Price Aermod Triangle ln Price ln Price

Triangle_pre× post -0.0002 -0.1005*** -0.3830***
[0.0007] [0.0090] [0.0113]

Aermod 0.0021
[0.0071]

Triangle 0.0006
[0.0019]

Method OLS OLS OLS 2SLS 2SLS
R2 0.948 0.888 0.932

B. Uniform Kernel (2-km band)
(1) (2) (3) (4) (5)

ln Price Aermod Uniform ln Price ln Price

Uniform_pre× post 0.0001 -0.0479*** -0.4071***
[0.0003] [0.0064] [0.0212]

Aermod -0.0026
[0.0071]

Uniform -0.0003
[0.0008]

Method OLS OLS OLS 2SLS 2SLS
R2 0.948 0.888 0.906

Notes: N=41,771. Sample average of triangle_pre is 2.303. Sample average of
uniform_pre is 1.683. Controls include house effects, year-quarter effects, and local
quadratic time trends. Observations absorbed by fixed effects are dropped. Standard
errors, clustered at 100-m grid, in brackets: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 12: Comparison of Pollution Estimates Across Models

Model/Paper Crisis’ Effect MWTP
on Avg. Price

Standard models
(1) Geo DD (1 mile) $1,438
(2) Geo DD (2 miles) −$589
(3) Triangle kernel −$217 −$246
(4) Uniform kernel $95 $138

Prior Research
(5) SH 1995 (3rd q-tile) $233∗∗
(6) SH 1995 (mean) $260∗∗
(7) CG 2005 $191∗∗
(8) BKT 2009 $130∗∗∗
(9) BKT 2009 (w/ moving) $350∗∗

Wind-based model
(10) Aermod $7,324∗∗∗ $3,272∗∗∗

Notes: Each row is taken from a different research design. “Effect of
Crisis” is the reduced form effect of the Electricity Crisis calculated
at sample averages. For estimates from other papers, the authors’
stated preferred estimate is used. Geo DD, Triangle, and Uniform
rows use only results specific to those research designs, i.e., no first
or second stage using Aermod-based exposure. Significance levels
taken from original sources: ∗∗ p < .05, ∗∗∗ p < .01
Row 1: Table 9, col 1
Row 2: Table 9, col 4
Row 3: Table 11A, cols 1 & 5
Row 4: Table 11B, cols 1 & 5
Row 5: Smith and Huang (1995), abstract, meta-analysis
Row 6: Smith and Huang (1995), abstract, meta-analysis
Row 7: Chay and Greenstone (2005), Table 5A, col 4
Row 8: Bayer, Keohane, and Timmins (2009), Table 6, col 2
Row 9: Bayer, Keohane, and Timmins (2009), Table 6, col 4;
accounts for moving costs
Row 10: Table 6, cols 2 & 4
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Table 13: Exposure’s Effect on House Price by Quarter, 2SLS

(1) (2)

Aermod×Q1 -0.005 -0.005
[0.051] [0.052]

Aermod×Q2 -0.018 -0.019
[0.014] [0.014]

Aermod×Q3 0.015 0.015
[0.012] [0.012]

Aermod×Q4 -0.033** -0.033**
[0.016] [0.017]

Method 2SLS LIML
κ 1 1.0001
Test for Equality
(p-value)
Q4=Q1 0.651 0.657
Q4=Q2 0.537 0.541
Q4=Q3 0.063 0.065

Notes: N=41,721. Outcome variable is ln
house price. Controls include house effects,
year-quarter effects, and local quadratic
time trends. Excluded instruments are
aermod_pre interacted with year dummies.
Standard errors, clustered at 100-m grid,
in brackets: *** p < 0.01, ** p < 0.05,
* p < 0.1.
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Table 14: Effect of Pollution on Block Group Demographics

ln Pop. ln H-holds Pop/mi2 ln Income % No HS

A. Naïve OLS
Aermod 0.003 0.004** -8.668 -0.101*** 0.027***

[0.002] [0.002] [36.865] [0.008] [0.003]
B. OLS with Controls

Aermod -0.002 0.001 -50.478 0.003 0.002
[0.005] [0.005] [80.337] [0.004] [0.001]

C. Reduced Form
Aermod_pre×post -0.004** -0.004* -79.998** 0.004* -0.003***

[0.002] [0.002] [39.863] [0.003] [0.001]
D. 2SLS

Aermod 0.017* 0.016* 322.427* -0.018 0.011***
[0.009] [0.010] [169.796] [0.011] [0.004]

Notes: N=3,868. Sample periods are 2000 and 2005–2009 using data from the 2000
Census and 2005–2009 ACS, respectively. Regressions include block group fixed effects
and 10-km grid–post dummies. Year-2000 demographic controls, interacted with “post”,
include: population, number of households, population per square mile, ln median
household income, number of people at least 25 years old, fraction without a high
school diploma, fraction with diploma but no college, fraction with at least some
college, fraction white (non-hispanic), fraction hispanic, fraction black. All educational
attainment variables are restricted to the sample of people who are at least 25 years
old. Block groups with fewer than 400 people in 2000 are dropped. Sample average of
aermod_pre is 6.224. Standard errors, clustered by tract, in brackets: *** p < 0.01,
** p < 0.05, * p < 0.1.

Table 15: Change in Population by Educational Attainment

(1) (2) (3)
ln Less than HS ln High School ln More than HS

Aermod_pre×post -0.021*** 0.005* -0.002
[0.005] [0.002] [0.004]

R2 0.982 0.995 0.980
N 3,588 3,864 3,714

Notes: Outcome is the log of the number of people with the given educational
attainment who are at least 25 years old. Block groups with an undefined logarithm
in either year are dropped. Regressions weighted by block group population in 2000.
Otherwise, sample and controls are the same as in Table 14. Sample average of
aermod_pre is 6.225. Standard errors, clustered by tract, in brackets: *** p < 0.01,
** p < 0.05, * p < 0.1.
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Appendix Figures and Tables

Figure A1: Cities in Sample Area with 10-km Grid

Notes: Colors denote parcels belonging to different cities. Black parcels have no city data.

64



Figure A2: Monitoring Station and Firm Locations

Firms
Poll. Monitors
Met. Stations 0 5 10

km

Notes: Firms and meteorology stations are restricted to those that contribute to the main
regression sample. Pollution monitors restricted to those with constant NOx coverage over
1997–2005.
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Table A1: Pollution and House Prices, Full Diff-in-diff Results

(1) (2) (3)
ln Price Aermod ln Price

Aermod_pre×post 0.0032*** -0.4328***
[0.0008] [0.0748]

Aermod -0.0073***
[0.0024]

Year-Quarter Effects
1997Q2 0.0712 -0.3588 0.0686

[0.0681] [0.4045] [0.0679]
1997Q3 0.1384 0.4692 0.1419

[0.1310] [0.7743] [0.1309]
1997Q4 0.2033 -0.7367 0.1979

[0.1885] [1.1304] [0.1882]
1998Q1 0.2578 -0.5633 0.2536

[0.2447] [1.4530] [0.2444]
1998Q2 0.3393 -2.9441* 0.3177

[0.2978] [1.7688] [0.2973]
1998Q3 0.4252 -0.6891 0.4201

[0.3466] [2.0542] [0.3462]
1998Q4 0.4730 -0.6668 0.4681

[0.3920] [2.3262] [0.3916]
1999Q1 0.5225 -1.9205 0.5084

[0.4344] [2.5840] [0.4339]
1999Q2 0.5827 -2.0290 0.5678

[0.4728] [2.8160] [0.4722]
1999Q3 0.6537 -0.8812 0.6473

[0.5086] [3.0291] [0.5082]
1999Q4 0.6790 -1.1694 0.6704

[0.5420] [3.2295] [0.5416]
2000Q1 0.7352 -2.1188 0.7197

[0.5700] [3.4038] [0.5694]
2000Q2 0.7930 -2.2088 0.7767

[0.5957] [3.5583] [0.5951]
2000Q3 0.8422 -1.7783 0.8291

[0.6178] [3.7013] [0.6172]
2000Q4 0.8985 -2.7325 0.8784

[0.6366] [3.8267] [0.6360]
2001Q1 0.9363 -0.2790 0.9342

[0.6529] [3.9004] [0.6526]
2001Q2 0.9765 -1.0513 0.9687

[0.6657] [3.9849] [0.6654]
2001Q3 1.0221 -0.9022 1.0154

[0.6758] [4.0596] [0.6754]
2001Q4 1.0844 -1.3753 1.0743

[0.6822] [4.1135] [0.6819]
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2002Q1 1.1269 -1.0652 1.1191
[0.6865] [4.1590] [0.6862]

2002Q2 1.2030* -1.3092 1.1934*
[0.6878] [4.1862] [0.6875]

2002Q3 1.2714* -0.9633 1.2643*
[0.6870] [4.2010] [0.6868]

2002Q4 1.3142* -0.7296 1.3088*
[0.6829] [4.2021] [0.6828]

2003Q1 1.3676** -0.5854 1.3633**
[0.6768] [4.1923] [0.6768]

2003Q2 1.4447** -0.6273 1.4401**
[0.6689] [4.1759] [0.6689]

2003Q3 1.4980** 0.0445 1.4983**
[0.6587] [4.1541] [0.6589]

2003Q4 1.5687** -0.0061 1.5687**
[0.6479] [4.1249] [0.6481]

2004Q1 1.6395*** 0.3494 1.6421***
[0.6351] [4.0926] [0.6355]

2004Q2 1.7394*** 0.5440 1.7434***
[0.6225] [4.0642] [0.6230]

2004Q3 1.7928*** 1.2637 1.8021***
[0.6095] [4.0432] [0.6101]

2004Q4 1.8183*** 1.4946 1.8293***
[0.5975] [4.0220] [0.5982]

2005Q1 1.8874*** 2.0931 1.9028***
[0.5876] [4.0156] [0.5884]

2005Q2 1.9504*** 2.1437 1.9661***
[0.5793] [4.0313] [0.5801]

2005Q3 1.9984*** 2.8258 2.0191***
[0.5752] [4.0567] [0.5761]

2005Q4 2.0246*** 3.4054 2.0496***
[0.5762] [4.1181] [0.5771]

Demographic Time Trends
Loan-to-Value Ratio×t 0.0312 0.2497 0.0330

[0.0305] [0.1623] [0.0304]
Loan-to-Value Ratio×t2 0.0003 -0.0222 0.0001

[0.0032] [0.0170] [0.0032]
Interest Rate×t -0.0368 0.2035 -0.0353

[0.0311] [0.1916] [0.0310]
Interest Rate×t2 0.0058* -0.0212 0.0057*

[0.0033] [0.0202] [0.0033]
log Median Income×t 0.0068 -0.1038** 0.0061

[0.0073] [0.0412] [0.0073]
log Median Income×t2 -0.0034*** 0.0044 -0.0033***

[0.0008] [0.0039] [0.0008]
Geographic Time Trends
Grid 1×t -0.0042 0.5283*** -0.0003
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[0.0175] [0.0682] [0.0175]
Grid 1×t2 -0.0001 -0.0390*** -0.0004

[0.0017] [0.0052] [0.0017]
Grid 2×t 0.0051 0.7910*** 0.0109

[0.0173] [0.0821] [0.0172]
Grid 2×t2 -0.0018 -0.0657*** -0.0023

[0.0017] [0.0061] [0.0017]
Grid 3×t 0.0102 1.0460*** 0.0179

[0.0187] [0.1474] [0.0186]
Grid 3×t2 -0.0029 -0.0806*** -0.0035*

[0.0019] [0.0129] [0.0019]
Grid 4×t 0.0042 0.9010*** 0.0109

[0.0209] [0.1276] [0.0209]
Grid 4×t2 -0.0012 -0.0800*** -0.0018

[0.0022] [0.0144] [0.0022]
Grid 5×t 0.0592*** 0.4166*** 0.0623***

[0.0185] [0.0508] [0.0185]
Grid 5×t2 -0.0054*** -0.0307*** -0.0056***

[0.0018] [0.0046] [0.0018]
Grid 6×t -0.0861*** 0.5024*** -0.0824***

[0.0213] [0.0488] [0.0213]
Grid 6×t2 0.0074*** -0.0364*** 0.0071***

[0.0021] [0.0045] [0.0021]
Grid 7×t -0.0177 0.4356*** -0.0145

[0.0188] [0.1151] [0.0188]
Grid 7×t2 0.0015 -0.0237*** 0.0013

[0.0019] [0.0074] [0.0019]
Grid 8×t -0.0459** 0.5502*** -0.0418**

[0.0199] [0.0675] [0.0199]
Grid 8×t2 0.0042** -0.0311*** 0.0040**

[0.0020] [0.0060] [0.0020]
Grid 9×t -0.0008 0.4396*** 0.0024

[0.0168] [0.0574] [0.0168]
Grid 9×t2 0.0000 -0.0272*** -0.0002

[0.0016] [0.0049] [0.0016]
Grid 10×t -0.0000 0.4612*** 0.0033

[0.0175] [0.0526] [0.0175]
Grid 10×t2 -0.0004 -0.0341*** -0.0006

[0.0017] [0.0050] [0.0017]
Grid 11×t 0.0111 0.7269** 0.0164

[0.0236] [0.3109] [0.0232]
Grid 11×t2 -0.0015 -0.0266 -0.0017

[0.0024] [0.0196] [0.0023]
Grid 12×t 0.0301* 0.7649*** 0.0357**

[0.0176] [0.1242] [0.0176]
Grid 12×t2 -0.0027 -0.0540*** -0.0031*

[0.0017] [0.0076] [0.0017]
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Grid 13×t -0.0132 0.7943*** -0.0074
[0.0180] [0.0958] [0.0180]

Grid 13×t2 -0.0002 -0.0476*** -0.0005
[0.0018] [0.0076] [0.0018]

Grid 14×t 0.1239* 1.3842** 0.1341*
[0.0730] [0.6399] [0.0753]

Grid 14×t2 -0.0141* -0.1041 -0.0148*
[0.0084] [0.0637] [0.0086]

Grid 15×t -0.0038 0.7585*** 0.0018
[0.0205] [0.0755] [0.0205]

Grid 15×t2 -0.0016 -0.0514*** -0.0020
[0.0021] [0.0075] [0.0021]

Grid 16×t 0.0261 0.6306*** 0.0307*
[0.0176] [0.1031] [0.0176]

Grid 16×t2 -0.0024 -0.0758*** -0.0030*
[0.0017] [0.0135] [0.0017]

Grid 17×t 0.0127 0.4856*** 0.0163
[0.0183] [0.0738] [0.0183]

Grid 17×t2 -0.0017 -0.0395*** -0.0020
[0.0018] [0.0074] [0.0018]

Method OLS OLS 2SLS
Note: N=41,771. Table presents the full regression output Columns 2–4 of
Table 6. Controls also include property fixed effects.
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