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Climate damage & the Social Cost of Carbon

Source: Interagency Working Group on
Social Cost of Carbon, 2010

Literature informing damage functions
(our calculation)

“The curvature of the demand for cooling energy is the most
important parameter...that determine(s) the social cost of
carbon”

– Anthoff & Tol (2013)
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Energy consumption, temperature, & income

Delhi, India (2016) Dubai, UAE (2016)
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Three principles for estimating climate damages

Damage functions should be based on the best available evidence.

1 Plausibly Causal: should be grounded in empirical estimates
using exogenous variation & purge unobserved heterogeneity.

2 Reflect Damage from Around the World: should use data
representing the global population (not just rich countries).

3 Reflect Adaptation and its Costs: should reflect that
agents adapt given income & climate, include these costs.
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Previous literature

Most empirical work has focused on estimating the impact of
local temperature on local energy consumption in developed
country settings (Deschênes and Greenstone, 2011 (US); Wenz et

al., 2017 (Europe); Auffhammer et al., 2017 (USA); Auffhammer, 2018

(California))

Empirical studies rarely capture adaptation or the role of
income growth in transforming energy demand (Auffhammer,

2018 (California); Davis and Gertler, 2015 (Mexico))

Energy modeling studies (Clarke et al., 2018; Isaac and van Vuuren,

2009) can be global in scope and account for energy system
transformations, but require credible empirical calibration
of parameters that govern structural relationships
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A global empirical SCC for energy consumption

Contribution of this paper

We provide the first estimate of the global impact of climate change on
total energy consumption using globally comprehensive data, accounting
for economic development and adaptive behavior

We use these results to compute the net cost of global energy
consumption associated with an additional ton of CO2 emissions – i.e. a
“partial” social cost of carbon (SCC) for energy consumption

Partial SCC estimates across sub-sectors of the global
economy can be used to compute a total SCC – this is at the
core of ongoing CIL work (e.g. Carleton et al., (2019) for
mortality).
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Outline

Step 1: Estimate causal relationship between climate and energy
consumption

Step 2: Model energy responses to temperature that reflect income and
climate adaptation

Step 3: Predict response functions spatially and temporally and project
impacts into the future using high resolution climate projections

Step 4: Estimate empirical damage function accounting for uncertainty,
then calculate a partial energy consumption-only Social Cost of
Carbon
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Comprehensive energy consumption data

International Energy Agency (IEA) provides data from 146
Countries (1971-2012).

Residential, Commercial, and Industrial Consumption of Electricity
and Other Fuels.

Observational unit is Country × Year × Energy source
T. Carleton | impactlab.org



IEA data: Globally comprehensive, well documented
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Italy: Annual consumption of other energy fuels

Solutions:
→ Account for changes in reporting practices using ∼300 “reporting
regime”-fixed-effects and dropping 1,529 obs.

→ Down-weight low credibility regimes based on 1
var(ε̂)

(i.e. FGLS).

→ Estimate model in first-differences to limit the influence of discontinuities
since energy consumption contains a unit-root. Unit Root Test
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High-resolution climate data

Exploit local daily variation to identify pixel-by-day nonlinear
responses using country-by-year outcome data (e.g. Hsiang, 2016)

Daily temperature and rainfall at 0.25◦×0.25◦ (Global
Meteorological Forcing Dataset, V1)

Aggregating high-resolution climate data to country j × year t

Let Tzd denote the temperature at pixel z on day d .

We construct a country-year temperature vector composed of
nonlinear functions of daily pixel-level average temperature:

Tjt ≡

∑
z∈j

ωzj

∑
d∈t

h1(Tzd), ...,
∑
z∈j

ωzj

∑
d∈t

hK (Tzd)


where ωzj are population weights
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Estimating the energy-temperature relationship

Let E denote energy consumption in GJ per capita.

Ejtc = fc(Tjt) + gc(Pjt) + αjic + δrtc + εjtc

j = country, i = “regime”, r = region, t = year

c = fuel category (electricity, other fuels)

First differencing leads to:

∆Ejtc = ∆fc(Tjt) + ∆gc(Pjt) + ∆δrtc + ∆εjtc
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Estimating the energy-temperature relationship

Let E denote energy consumption in GJ per capita.

Ejtc = fc(Tjt) + gc(Pjt) + αjic + δrtc + εjtc

j = country, i = “regime”, r = region, t = year

c = fuel category (electricity, other fuels)

First differencing and FGLS weighting leads to:

wi

[
∆Ejtc

]
= wi

[
∆fc(Tjt) + ∆gc(Pjt) + ∆δrtc + ∆εjtc

]
where wi = 1

var(∆εjtc∈i )
reflecting variability in “reporting regime” i
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Energy consumption and temperature
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Prior literature

Residential electricity consumption (California)
Auffhammer (2015)
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Outline

Step 1: Estimate causal relationship between temperature and energy
consumption

Step 2: Model energy responses to temperature that reflect income and
climate adaptation

Step 3: Predict response functions spatially and temporally and project
impacts into the future using high resolution climate projections

Step 4: Estimate empirical damage function accounting for uncertainty,
then calculate a partial energy consumption-only Social Cost of
Carbon
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Accounting for economic development is crucial
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Modeling climate adaptation: Warm temperatures
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Modeling climate adaptation: Cool temperatures

-5 5 15 25 35

Temperature (C)

En
er

gy
 C

on
su

m
pt

io
n 

(k
W

h 
pc

)

0

20

Long-run average Heating Degree Days (HDD) modulate the
response to T < 20C

T. Carleton | impactlab.org



Modeling climate adaptation: Cool temperatures
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Estimating an energy-temperature relationship
reflecting adaptation

Concept

Allow the shape of the function describing the energy-temperature
relationship at a location be a function of conditions at that
location.

Ejct = fc(Tjt | logGDPpc jt ,CDD j ,HDD j) + gc(Pjt) + αjic + δrtc + εjtc

j = country, i = “regime”, r = region, c = fuel category, t = year

Covariates

→ CDDj = long-run avg. cooling degree days (>20◦C)

→ HDDj = long-run avg. heating degree days (<20◦C)

→ log(GDPpc)jt = moving average of log income per capita

Full specification
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Electr. cons. = f(weather | climate, income)

Electricity 

G
J 

pe
r c

ap
ita

-5 5 15 25 35
Temperature (oC)

0

.01

.02

-.01

Av
er

ag
e 

in
co

m
e 

te
rc

ile
PO

O
R

ER
R

IC
H

ER

Average temperature tercile
COLDER HOTTER

T. Carleton | impactlab.org



Electr. cons. = f(weather | climate, income)

Electricity 

G
J 

pe
r c

ap
ita

G
J 

pe
r c

ap
ita

G
J 

pe
r c

ap
ita

-5 5 15 25 35
Temperature (oC)

0

.01

.02

-.01

0

.01

.02

-.01

0

.01

.02

-.01

Av
er

ag
e 

in
co

m
e 

te
rc

ile
PO

O
R

ER
R

IC
H

ER

Average temperature tercile
COLDER HOTTER

T. Carleton | impactlab.org



Electr. cons. = f(weather | climate, income)

Electricity 

G
J 

pe
r c

ap
ita

G
J 

pe
r c

ap
ita

G
J 

pe
r c

ap
ita

-5 5 15 25 35
Temperature (oC)

-5 5 15 25 35
Temperature (oC)

-5 5 15 25 35
Temperature (oC)

0

.01

.02

-.01

0

.01

.02

-.01

0

.01

.02

-.01

Av
er

ag
e 

in
co

m
e 

te
rc

ile
PO

O
R

ER
R

IC
H

ER

Average temperature tercile
COLDER HOTTER

T. Carleton | impactlab.org



Other fuels cons. = f(weather | climate, income)
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Other fuels cons. = f(weather | climate, income)
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Outline

Step 1: Estimate causal relationship between climate and energy
consumption

Step 2: Model energy responses to temperature that reflect income and
climate adaptation

Step 3: Predict response functions spatially and temporally and project
impacts into the future using high resolution climate projections

Step 4: Estimate empirical damage function accounting for uncertainty,
then calculate a partial energy consumption-only Social Cost of
Carbon
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A high resolution impact space

We create a set of “impact regions” to be standardized
units of analysis in projections.

Impact regions are engineered to

→ represent or amalgamate existing political units
(county-like),
→ be comparable in population size across regions,
→ have internally homogenous climate within each region.

We then interpolate energy-temperature response
functions for each impact region using high-resolution
covariate data.
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Spatial resolution of early IAMs

DICE (1992)

1 region
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Spatial resolution of early IAMs

DICE (1992)

1 region

FUND (1996)

16 regions
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Re-imagining possibilities w/ distributed computing

Climate Impact Lab (2020)

25,000 regions
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How to fairly represent the global population?

We use our estimated response surface to predict response
functions for all “impact regions” globally.

energy temp responsert = f̂c(Trt | CDDrt ,HDDrt , logGDPpc rt)

Requires we assemble data for present (and future) in each region

Income & populaton:
OECD × nightlights → downscale income to subnational level
IIASA Shared Socioeconomic Pathways (SSP) incomes to 2100

Weather & climate:
33 GCMs downscaled to impact region level
Average climate calculated as 15 year average of temperature

Sample overlap
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Additional electricity demand at 32◦C in 2015
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Additional electricity demand at 32◦C in 2050
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Additional electricity demand at 32◦C in 2075
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Additional electricity demand at 32◦C in 2099
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Additional other fuels demand at 0◦C in 2099
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Projecting the energy impacts of climate change

Goal: compute the additional impact of climate change net of
other factors (e.g. income) that will change in the future.

Let predicted energy consumption be E = βT , with climate
change causing T1 → T2

– β(Income2,Climate2) = sensitivity with income and climate
adaptation

– β(Income2,Climate1) = sensitivity with income adaptation

Impact of climate change, with income and climate adaptation:

ÊCC − ÊNoCC = β̂(Income2,Climate2)T2︸ ︷︷ ︸
richer, w/ ∆Temp

− β̂(Income2,Climate1)T1︸ ︷︷ ︸
richer, no ∆Temp
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Probabilisitic climate change impacts

We combine this climate uncertainty with statistical uncertainty from the
estimation of energy-temperature response functions to compute probabilistic
impact estimates for all regions
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∆Global energy consumption due to climate change
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∆Electricity consumption due to climate change:
2099
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∆Other fuels consumption due to climate change:
2099
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Impacts at 2099 vs current energy consumption
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Impacts at 2099 vs current energy consumption
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Outline

Step 1: Estimate causal relationship between temperature and energy
consumption

Step 2: Model energy responses to temperature that reflect income and
climate adaptation

Step 3: Predict response functions spatially and temporally and project
impacts into the future using high resolution climate projections

Step 4: Estimate empirical damage function accounting for uncertainty,
then calculate a partial energy consumption-only Social Cost of
Carbon
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Constructing an energy-specific damage function

1 Compute changes in electricity and other fuels attributable to
climate change in every region and year

2 Assemble global data on electricity generation costs and other
fuel prices; monetize impacts, allowing prices to grow under
different scenarios

3 Index these monetized damages in each of 33 climate models
against the change in Global Mean Surface Temperature
(GMST)

4 Compute probability distribution of damages in each year,
conditional on GMST

5 This is a damage function, in the sense of Nordhaus (1992)
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Monetized impacts: 1.4% annual price growth
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Monetized impacts: Sensitivity to price growth
scenario
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Empirical energy damage function

For each 1◦C, electricity cons. rises ∼6% of current global consumption, other
fuels cons. falls ∼6%
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Calculating a “Partial SCC” for energy consumption

Issue: The 33 high-resolution global climate models and economic
scenarios we have used in projections (1) end in 2100 and (2) do
not represent every climate sensitivity.

Solution: Use a “simple climate model” (FAIR) to sample all
sensitivities and project global temperatures to 2300.

1 Compute damages in standard scenario (e.g. RCP 8.5)

2 Perturb temperature trajectory with a pulse of CO2 emissions
today

3 Value discounted stream of additional damages from this pulse

4 This is the NPV of marginal damages from a marginal
emission: a “partial SCC” for energy (total SCC includes
other sectors). T. Carleton | impactlab.org



Damages from a single ton of CO2

Fossil CO2 emissions 
(GtCO2)

median damages
interquartile range from 
climate sensitivity 
uncertainty

A

Year

T. Carleton | impactlab.org



Damages from a single ton of CO2

Fossil CO2 emissions 
(GtCO2)

median damages
interquartile range from 
climate sensitivity 
uncertainty

A

Year

CO2 concentrations 
(ppm)

B

Year

T. Carleton | impactlab.org



Damages from a single ton of CO2

Fossil CO2 emissions 
(GtCO2)

median damages
interquartile range from 
climate sensitivity 
uncertainty

A

Year

CO2 concentrations 
(ppm)

B

Year

Temperature anomaly 
(ºC)

C

Year

T. Carleton | impactlab.org



Damages from a single ton of CO2

Fossil CO2 emissions 
(GtCO2)

median damages
interquartile range from 
climate sensitivity 
uncertainty

A

Year

CO2 concentrations 
(ppm)

B

Year

Temperature anomaly 
(ºC)

Present value of 
damages ($/ton CO2)

C D

Year Year

T. Carleton | impactlab.org



Partial SCC for energy consumption

Discount rate: δ = 2.5% δ = 3% δ = 5%

I: 1.4% price growth

RCP 8.5 -1.51 -1.16 -0.60
[-6.59,0.06] [-4.76,-0.14] [-2.24,-0.19]

RCP 4.5 -1.37 -1.08 -0.58
[-6.00,-0.20] [-4.29,-0.26] [-1.98,-0.19]

II: 0% price growth

RCP 8.5 -0.72 -0.61 -0.39
[-2.63,-0.15] [-2.19,-0.17] [-1.39,-0.13]

III: MERGE-ETL 6.0 prices

RCP 8.5 -1.12 -0.82 -0.39
[-3.88,-0.31] [-2.80,-0.24] [-1.38,-0.12]

[Brackets] indicate 5-95% uncertainty ranges.
T. Carleton | impactlab.org
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Modeling technological progress

Our model proxies for diffusion and advancement of
technologies in accordance with climate and income

We do not explicitly consider other forms of
technological progress that may affect the temperature
sensitivity of energy consumption (e.g. climate
change-induced technological change)

To address this concern, we introduce a third interacted
variable – time – to capture changes in energy-temperature
responses driven by historical technological progress.

Future dose-response functions are then predicted as a
function of income, climate, and a linear time trend.

T. Carleton | impactlab.org



Responses are getting more extreme over time
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∆Global energy consumption due to climate change
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Note that the assumptions required to generate this result
are difficult to defend:

Linear extrapolation of historical time trends

Falling costs of energy services w/o compensatory efficiency gains

T. Carleton | impactlab.org



Partial SCC for energy consumption with temporal
extrapolation

Discount rate: δ = 2.5% δ = 3% δ = 5%

Main model

RCP 8.5 -1.51 -1.16 -0.60

RCP 4.5 -1.37 -1.08 -0.58

Extrapolating trends

RCP 8.5 9.33 5.67 1.24

RCP 4.5 9.96 5.88 1.20

All other robustness checks recover strikingly similar results to the
main analysis – alternative price scenarios; data quality sensitivity
checks; slower climate adaptation assumptions

T. Carleton | impactlab.org



Summary of findings

1 We design a “bottom-up” approach to develop partial SCC estimates
for an individual sector of the global economy

2 The partial SCC is based upon econometrically derived, probabilistic,
local damage estimates for thousands of geographic regions

3 We compute a partial SCC for energy consumption of ∼-$1 (δ = 3%),
accounting for future adaptation and impacts of income growth

4 This result is driven by sharply nonlinear relationship between income

and temperature-induced energy consumption

Many regions remain too poor to increase energy consumption in
response to climate change
Emerging (hot) economies’ increases in electricity are offset by
wealthy (cold) economies’ savings of other fuels

5 Building an empirically-based SCC has first order policy implications:

Partial SCC for energy consumption in FUND = $8 (Diaz, 2014)
Partial SCC for mortality in FUND ≤ $1.50 (Diaz, 2014), versus
$23.6 (Carleton et al., 2019)
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EXTRA SLIDES
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Unit root tests for energy consumption time series

Histograms of p-values from unit root tests of “regime” time series
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Unit root tests for energy consumption time series

Histograms of p-values from unit root tests of “regime” time series
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Estimating an energy-temperature relationship
reflecting adaptation

Ejtc = βc · Tjt + [η1c · Tjt ](Īc − LogGDPPC jt)ILogGDPPC jt<Īc

+ [η2c · Tjt ](LogGDPPC jt − Īc)ILogGDPPC jt≥Īc

+
2∑

k=1

γkcCDD j

∑
d∈t

(T k
jd − 20k)ITjd≥20

+
2∑

k=1

λkcHDD j

∑
d∈t

(20k − T k
jd)ITjd<20

+
[
κ1cLogGDPPC jt + φ1

]
ILogGDPPC jt<Īc

+
[
κ2cLogGDPPC jt + φ2

]
ILogGDPPC jt≥Īc

+ θc · Pjt + αjic + δrtc + εjtc (1)

Where j = country, i = “regime”, r = region, c = fuel category, t = year Back
T. Carleton | impactlab.org



Sample overlap between present & future
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Most remain within the support of historical observations. Back
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